中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Depth map upsampling using compressive sensing based model

文献类型:期刊论文

作者Dai, Longquan; Wang, Haoxing; Zhang, Xiaopeng
刊名NEUROCOMPUTING
出版日期2015-04-22
卷号154页码:325-336
关键词Depth map Compressive sensing Upsampling
英文摘要We propose a new method to enhance the lateral resolution of depth maps with registered high-resolution color images. Inspired by the theory of compressive sensing (CS), we formulate the upsampling task as a sparse signal recovery problem that solves an underdetermined system. With a reference color image, the low-resolution depth map is converted into suitable sampling data (measurements). The signal recovery problem, defined in a constrained optimization framework, can be efficiently solved by variable splitting and alternating minimization. Experimental results demonstrate the effectiveness of our CS-based method: it competes favorably with other state-of-the-art methods with large upsampling factors and noisy depth inputs. (C) 2014 Elsevier B.V. All rights reserved.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence
研究领域[WOS]Computer Science
关键词[WOS]UNCERTAINTY PRINCIPLES ; SIGNAL RECONSTRUCTION ; ATOMIC DECOMPOSITION ; OBJECT RECOGNITION ; PROJECTION
收录类别SCI
语种英语
WOS记录号WOS:000350081900033
源URL[http://ir.ia.ac.cn/handle/173211/8083]  
专题自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队
作者单位Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Dai, Longquan,Wang, Haoxing,Zhang, Xiaopeng. Depth map upsampling using compressive sensing based model[J]. NEUROCOMPUTING,2015,154:325-336.
APA Dai, Longquan,Wang, Haoxing,&Zhang, Xiaopeng.(2015).Depth map upsampling using compressive sensing based model.NEUROCOMPUTING,154,325-336.
MLA Dai, Longquan,et al."Depth map upsampling using compressive sensing based model".NEUROCOMPUTING 154(2015):325-336.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。