Joint learning of error-correcting output codes and dichotomizers from data
文献类型:期刊论文
作者 | Zhong, Guoqiang; Huang, Kaizhu; Liu, Cheng-Lin![]() |
刊名 | NEURAL COMPUTING & APPLICATIONS
![]() |
出版日期 | 2012-06-01 |
卷号 | 21期号:4页码:715-724 |
关键词 | Error correcting output codes (ECOC) Dichotomizer Concave-convex procedure (CCCP) |
英文摘要 | The ECOC technique is a powerful tool to learn and combine multiple binary learners for multi-class classification. It generally involves three steps: coding, dichotomizers learning, and decoding. In previous ECOC methods, the coding step and the dichotomizers learning step are usually performed independently. This simplifies the learning problem but may lead to unsatisfactory decoding results. To solve this problem, we propose a novel model for learning the ECOC matrix and dichotomizers jointly from data. We formulate the model as a nonlinear programming problem and develop an efficient alternating minimization algorithm to solve it. Specifically, for fixed ECOC matrix, our model is decomposed into a group of mutually independent quadratic programming problems; while for fixed dichotomizers, it is a difference of convex functions problem and can be easily solved using the concave--convex procedure algorithm. Our experimental results on ten data sets from the UCI machine learning repository demonstrated the advantage of our model over state-of-the-art ECOC methods. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Computer Science, Artificial Intelligence |
研究领域[WOS] | Computer Science |
关键词[WOS] | CLASSIFICATION ; DESIGN |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000304160200011 |
公开日期 | 2015-09-22 |
源URL | [http://ir.ia.ac.cn/handle/173211/7994] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_模式分析与学习团队 |
作者单位 | Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Zhong, Guoqiang,Huang, Kaizhu,Liu, Cheng-Lin. Joint learning of error-correcting output codes and dichotomizers from data[J]. NEURAL COMPUTING & APPLICATIONS,2012,21(4):715-724. |
APA | Zhong, Guoqiang,Huang, Kaizhu,&Liu, Cheng-Lin.(2012).Joint learning of error-correcting output codes and dichotomizers from data.NEURAL COMPUTING & APPLICATIONS,21(4),715-724. |
MLA | Zhong, Guoqiang,et al."Joint learning of error-correcting output codes and dichotomizers from data".NEURAL COMPUTING & APPLICATIONS 21.4(2012):715-724. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。