中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Boosted Multifeature Learning for Cross-Domain Transfer

文献类型:期刊论文

作者Yang, Xiaoshan1,2; Zhang, Tianzhu1,2; Xu, Changsheng1,2; Yang, Ming-Hsuan3; Xu CS(徐常胜)
刊名ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
出版日期2015
卷号11期号:3
关键词Algorithms Experimentation Performance Domain adaptation multifeature boosting denoising auto-encoder
英文摘要Conventional learning algorithm assumes that the training data and test data share a common distribution. However, this assumption will greatly hinder the practical application of the learned model for cross-domain data analysis in multimedia. To deal with this issue, transfer learning based technology should be adopted. As a typical version of transfer learning, domain adaption has been extensively studied recently due to its theoretical value and practical interest. In this article, we propose a boosted multifeature learning (BMFL) approach to iteratively learn multiple representations within a boosting procedure for unsupervised domain adaption. The proposed BMFL method has a number of properties. (1) It reuses all instances with different weights assigned by the previous boosting iteration and avoids discarding labeled instances as in conventional methods. (2) It models the instance weight distribution effectively by considering the classification error and the domain similarity, which facilitates learning new feature representation to correct the previously misclassified instances. (3) It learns multiple different feature representations to effectively bridge the source and target domains. We evaluate the BMFL by comparing its performance on three applications: image classification, sentiment classification and spam filtering. Extensive experimental results demonstrate that the proposed BMFL algorithm performs favorably against state-of-the-art domain adaption methods.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
研究领域[WOS]Computer Science
关键词[WOS]ADAPTATION
收录类别SCI
语种英语
WOS记录号WOS:000349852500003
公开日期2015-09-22
源URL[http://ir.ia.ac.cn/handle/173211/8044]  
专题自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队
通讯作者Xu CS(徐常胜)
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.China Singapore Inst Digital Media, Singapore 119613, Singapore
3.Univ Calif, Dept Elect Engn & Comp Sci, Merced, CA 95334 USA
推荐引用方式
GB/T 7714
Yang, Xiaoshan,Zhang, Tianzhu,Xu, Changsheng,et al. Boosted Multifeature Learning for Cross-Domain Transfer[J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,2015,11(3).
APA Yang, Xiaoshan,Zhang, Tianzhu,Xu, Changsheng,Yang, Ming-Hsuan,&徐常胜.(2015).Boosted Multifeature Learning for Cross-Domain Transfer.ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,11(3).
MLA Yang, Xiaoshan,et al."Boosted Multifeature Learning for Cross-Domain Transfer".ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 11.3(2015).

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。