中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Max-Confidence Boosting With Uncertainty for Visual Tracking

文献类型:期刊论文

作者Guo, Wen1,2; Cao, Liangliang3; Han, Tony X.4; Yan, Shuicheng5; Xu, Changsheng2
刊名IEEE TRANSACTIONS ON IMAGE PROCESSING
出版日期2015-05-01
卷号24期号:5页码:1650-1659
关键词Max-confidence boosting semi-supervised learning visual tracking
英文摘要The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the background and the foreground change with time. Many existing studies model this problem as tracking by classification with online updating of the classification models, however, most of them overlook the ambiguity in visual modeling and do not consider the prior information in the tracking process. In this paper, we present a novel visual tracking method called max-confidence boosting (MCB), which explores a new way of online updating ambiguous visual phenomenon. The MCB framework models uncertainty in prior knowledge utilizing the indeterministic labels, which are used in updating models from previous frames and the new frame. Our proposed MCB tracker allows ambiguity in the tracking process and can effectively alleviate the drift problem. Many experimental results in challenging video sequences verify the success of our method, and our MCB tracker outperforms a number of the state-of-the-art tracking by classification methods.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
研究领域[WOS]Computer Science ; Engineering
关键词[WOS]ROBUST TRACKING ; MEAN SHIFT ; FEATURES ; VIEW
收录类别SCI
语种英语
WOS记录号WOS:000352087100004
公开日期2015-09-22
源URL[http://ir.ia.ac.cn/handle/173211/8125]  
专题自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队
作者单位1.Shandong Business & Technol Univ, Dept Elect Engn, Yantai 264003, Peoples R China
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
3.IBM Watson Res Ctr, New York, NY 10598 USA
4.Univ Missouri, Columbia, MO 65211 USA
5.Natl Univ Singapore, Singapore 119077, Singapore
推荐引用方式
GB/T 7714
Guo, Wen,Cao, Liangliang,Han, Tony X.,et al. Max-Confidence Boosting With Uncertainty for Visual Tracking[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2015,24(5):1650-1659.
APA Guo, Wen,Cao, Liangliang,Han, Tony X.,Yan, Shuicheng,&Xu, Changsheng.(2015).Max-Confidence Boosting With Uncertainty for Visual Tracking.IEEE TRANSACTIONS ON IMAGE PROCESSING,24(5),1650-1659.
MLA Guo, Wen,et al."Max-Confidence Boosting With Uncertainty for Visual Tracking".IEEE TRANSACTIONS ON IMAGE PROCESSING 24.5(2015):1650-1659.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。