Convergence rates of solutions toward boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equations in the half-space
文献类型:期刊论文
作者 | Yin, Hui2,3; Zhao, Huijiang1; Kim, Jongsung1 |
刊名 | JOURNAL OF DIFFERENTIAL EQUATIONS
![]() |
出版日期 | 2008-12-01 |
卷号 | 245期号:11页码:3144-3216 |
关键词 | Generalized Benjamin-Bona-Mahony-Burgers equation Boundary layer solution Global stability Decay rate Space-time weighted energy method |
英文摘要 | This paper is concerned with the initial-boundary value problem of the generalized Benjamin-Bona-Mahony-Burgers equation in the half-space R+ |
WOS标题词 | Science & Technology ; Physical Sciences |
类目[WOS] | Mathematics |
研究领域[WOS] | Mathematics |
关键词[WOS] | VISCOUS CONSERVATION-LAWS ; NAVIER-STOKES EQUATION ; SINGULAR LIMIT PROBLEM ; ASYMPTOTIC STABILITY ; STATIONARY SOLUTIONS ; TRAVELING WAVES ; BEHAVIOR ; DECAY ; RELAXATION ; SYSTEMS |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000260844800003 |
公开日期 | 2015-10-13 |
源URL | [http://ir.wipm.ac.cn/handle/112942/7995] ![]() |
专题 | 武汉物理与数学研究所_2011年以前论文发表(包括2011年) |
作者单位 | 1.Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China 2.Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China 3.Chinese Acad Sci, Wuhan Inst Phys & Math, Phys Math Lab, Wuhan 430071, Peoples R China |
推荐引用方式 GB/T 7714 | Yin, Hui,Zhao, Huijiang,Kim, Jongsung. Convergence rates of solutions toward boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equations in the half-space[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2008,245(11):3144-3216. |
APA | Yin, Hui,Zhao, Huijiang,&Kim, Jongsung.(2008).Convergence rates of solutions toward boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equations in the half-space.JOURNAL OF DIFFERENTIAL EQUATIONS,245(11),3144-3216. |
MLA | Yin, Hui,et al."Convergence rates of solutions toward boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equations in the half-space".JOURNAL OF DIFFERENTIAL EQUATIONS 245.11(2008):3144-3216. |
入库方式: OAI收割
来源:武汉物理与数学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。