中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation

文献类型:期刊论文

作者Li, Xiao-li1; Li, Li-hong2; Zhang, Bao-lin1; Guo, Qian-jin3
刊名neurocomputing
出版日期2013-10-22
卷号118页码:179-190
关键词Support vector regression Self-adaptive learning based particle swarm optimization Ore grade estimation
英文摘要ore grade estimation is one of the key stages and the most complicated aspects in mining. its complexity originates from scientific uncertainty. in this paper, a novel hybrid slpso-svr model that hybridized the self-adaptive learning based particle swarm optimization (slpso) and support vector regression (svr) is proposed for ore grade estimation. this hybrid slpso-svr model searches for svr's optimal parameters using self-adaptive learning based particle swarm optimization algorithms, and then adopts the optimal parameters to construct the svr models. the svr uses the 'max-margin' idea to search for an optimum hyperplane, and adopts the e-insensitive loss function for minimizing the training error between the training data and identified function. the hybrid slpso-svr grade estimation method has been tested on a number of real ore deposits. the result shows that method has advantages of rapid training, generality and accuracy grade estimation approach. it can provide with a very fast and robust alternative to the existing time-consuming methodologies for ore grade estimation. crown copyright (c) 2013 published by elsevier b.v. all rights reserved.
WOS标题词science & technology ; technology
类目[WOS]computer science, artificial intelligence
研究领域[WOS]computer science
关键词[WOS]global optimization ; parameter ; algorithm ; selection ; kernel ; svm ; classification ; space
收录类别SCI
语种英语
WOS记录号WOS:000323693700019
公开日期2015-11-10
源URL[http://159.226.238.44/handle/321008/137983]  
专题大连化学物理研究所_中国科学院大连化学物理研究所
作者单位1.Chinese Acad Sci, Inst Geol & Geophys, Key Lab Mineral Resources, Beijing 100029, Peoples R China
2.Henan Univ Sci & Technol, Vehicle & Mot Power Engn Coll, Kaifeng 471023, Henan, Peoples R China
3.Chinese Acad Sci, Inst Chem, State Key Lab Mol React Dynam, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Li, Xiao-li,Li, Li-hong,Zhang, Bao-lin,et al. Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation[J]. neurocomputing,2013,118:179-190.
APA Li, Xiao-li,Li, Li-hong,Zhang, Bao-lin,&Guo, Qian-jin.(2013).Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation.neurocomputing,118,179-190.
MLA Li, Xiao-li,et al."Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation".neurocomputing 118(2013):179-190.

入库方式: OAI收割

来源:大连化学物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。