中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Tracking Human Pose Using Max-Margin Markov Models

文献类型:期刊论文

作者Zhao, Lin1; Gao, Xinbo2; Tao, Dacheng3,4; Li, Xuelong5
刊名ieee transactions on image processing
出版日期2015-12-01
卷号24期号:12页码:5274-5287
关键词Pose tracking pose estimation max-margin articulated shapes
英文摘要we present a new method for tracking human pose by employing max-margin markov models. representing a human body by part-based models, such as pictorial structure, the problem of pose tracking can be modeled by a discrete markov random field. considering max-margin markov networks provide an efficient way to deal with both structured data and strong generalization guarantees, it is thus natural to learn the model parameters using the max-margin technique. since tracking human pose needs to couple limbs in adjacent frames, the model will introduce loops and will be intractable for learning and inference. previous work has resorted to pose estimation methods, which discard temporal information by parsing frames individually. alternatively, approximate inference strategies have been used, which can overfit to statistics of a particular data set. thus, the performance and generalization of these methods are limited. in this paper, we approximate the full model by introducing an ensemble of two tree-structured sub-models, markov networks for spatial parsing and markov chains for temporal parsing. both models can be trained jointly using the max-margin technique, and an iterative parsing process is proposed to achieve the ensemble inference. we apply our model on three challengeable data sets, which contains highly varied and articulated poses. comprehensive experimental results demonstrate the superior performance of our method over the state-of-the-art approaches.
WOS标题词science & technology ; technology
类目[WOS]computer science, artificial intelligence ; engineering, electrical & electronic
研究领域[WOS]computer science ; engineering
关键词[WOS]action recognition ; pictorial structures ; flexible mixtures ; people ; video ; flow ; propagation ; parts
收录类别SCI ; EI
语种英语
WOS记录号WOS:000362488900013
公开日期2015-11-10
源URL[http://ir.opt.ac.cn/handle/181661/25434]  
专题西安光学精密机械研究所_光学影像学习与分析中心
作者单位1.Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
2.Xidian Univ, Sch Elect Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
3.Univ Technol, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia
4.Univ Technol, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
5.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr Opt IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Lin,Gao, Xinbo,Tao, Dacheng,et al. Tracking Human Pose Using Max-Margin Markov Models[J]. ieee transactions on image processing,2015,24(12):5274-5287.
APA Zhao, Lin,Gao, Xinbo,Tao, Dacheng,&Li, Xuelong.(2015).Tracking Human Pose Using Max-Margin Markov Models.ieee transactions on image processing,24(12),5274-5287.
MLA Zhao, Lin,et al."Tracking Human Pose Using Max-Margin Markov Models".ieee transactions on image processing 24.12(2015):5274-5287.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。