Lewis and Bronsted acidic sites in M4+-doped zeolites (M = Ti, Zr, Ge, Sn, Pb) as well as interactions with probe molecules: A DFT study
文献类型:期刊论文
作者 | Yang, Gang1,3; Zhou, Lijun1; Han, Xiuwen2 |
刊名 | journal of molecular catalysis a-chemical
![]() |
出版日期 | 2012-11-01 |
卷号 | 363页码:371-379 |
关键词 | Bronsted acidity Lewis acidity Density functional calculations Adsorption energy Probe molecules |
英文摘要 | tetravalent-ion (m4+)-doped zeolites show excellent performances for a variety of catalytic processes, including the focusing biomass conversions. in this work, density functional calculations were performed to probe the lewis and bronsted acidities of various m4+-doped zeolites as well as to study interactions with probe molecules. the lewis and bronsted acidities increase in the orders of silicalite-1 << ge < ti < pb < sn < zr and silicalite-1 << ti < ge < zr approximate to b < pb < sn < al, respectively. the lewis acidities should be defined as the local sites around the m4+ ions, explaining why the adsorption energies give a more consistent order with lumo energies and absolute electronegativity rather than fukui functions. the formation of bronsted acidic sites is facilitated by doping with m4+ ions. albeit the bronsted acidities of these m4+-doped zeolites change greatly with sn being the strongest, their strengths are far below that of al3+. the interactions of five probe molecules of changing basicities with the bronsted acidic sites indicate that the formations of covalent and/or ionic structures are the proton-competing results: the covalent and ionic structures co-exist only for trimethyphosphine and pyridine of comparable basicity; otherwise, proton transfer will take place and result in only the ionic or covalent structures. the proton affinity fails to predict the bronsted acidity of zr and is evidenced, especially by formation of the covalent structure during pyridine adsorption. thus, this work presents a dynamic image of acid-base interactions and aids our understanding toward the catalysis of solid-state acids. (c) 2012 elsevier b.v. all rights reserved. |
WOS标题词 | science & technology ; physical sciences |
类目[WOS] | chemistry, physical |
研究领域[WOS] | chemistry |
关键词[WOS] | density-functional theory ; effective core potentials ; fukui function indexes ; isomorphously substituted zsm-5 ; mcm-22 zeolite ; non-negativity ; mfi framework ; ts-1 zeolites ; active-sites ; beta-zeolite |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000309443400048 |
公开日期 | 2015-11-17 |
源URL | [http://159.226.238.44/handle/321008/143092] ![]() |
专题 | 大连化学物理研究所_中国科学院大连化学物理研究所 |
作者单位 | 1.NE Forestry Univ, Minist Educ, Engn Res Ctr Forest Biopreparat, Harbin 150040, Peoples R China 2.Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China 3.Eindhoven Univ Technol, Dept Chem Engn & Chem, NL-5600 MB Eindhoven, Netherlands |
推荐引用方式 GB/T 7714 | Yang, Gang,Zhou, Lijun,Han, Xiuwen. Lewis and Bronsted acidic sites in M4+-doped zeolites (M = Ti, Zr, Ge, Sn, Pb) as well as interactions with probe molecules: A DFT study[J]. journal of molecular catalysis a-chemical,2012,363:371-379. |
APA | Yang, Gang,Zhou, Lijun,&Han, Xiuwen.(2012).Lewis and Bronsted acidic sites in M4+-doped zeolites (M = Ti, Zr, Ge, Sn, Pb) as well as interactions with probe molecules: A DFT study.journal of molecular catalysis a-chemical,363,371-379. |
MLA | Yang, Gang,et al."Lewis and Bronsted acidic sites in M4+-doped zeolites (M = Ti, Zr, Ge, Sn, Pb) as well as interactions with probe molecules: A DFT study".journal of molecular catalysis a-chemical 363(2012):371-379. |
入库方式: OAI收割
来源:大连化学物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。