The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations
文献类型:期刊论文
作者 | Wang, G; Wang, L |
刊名 | JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
![]() |
出版日期 | 2003-08-01 |
卷号 | 118期号:2页码:429-461 |
关键词 | Pontryagin maximum principle optimal control semilinear parabolic equation periodic input Carleman inequality |
英文摘要 | This paper deals with optimal control problems for semilinear parabolic differential equations, which may be governed by nonmonotone operators and have no global solution, with periodic inputs. The Pontryagin maximum principle is obtained and the Carleman inequality for the backward linearized adjoint system associated with the state system is established. |
WOS标题词 | Science & Technology ; Technology ; Physical Sciences |
类目[WOS] | Operations Research & Management Science ; Mathematics, Applied |
研究领域[WOS] | Operations Research & Management Science ; Mathematics |
关键词[WOS] | POINT BOUNDARY-CONDITIONS ; HEAT-EQUATION ; CONTROLLABILITY |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000185012400011 |
公开日期 | 2015-12-08 |
源URL | [http://ir.wipm.ac.cn/handle/112942/8814] ![]() |
专题 | 武汉物理与数学研究所_2011年以前论文发表(包括2011年) |
作者单位 | 1.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan, Peoples R China 2.Huazhong Normal Univ, Dept Math, Wuhan, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, G,Wang, L. The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations[J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS,2003,118(2):429-461. |
APA | Wang, G,&Wang, L.(2003).The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations.JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS,118(2),429-461. |
MLA | Wang, G,et al."The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations".JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 118.2(2003):429-461. |
入库方式: OAI收割
来源:武汉物理与数学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。