中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations

文献类型:期刊论文

作者Wang, G; Wang, L
刊名JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
出版日期2003-08-01
卷号118期号:2页码:429-461
关键词Pontryagin maximum principle optimal control semilinear parabolic equation periodic input Carleman inequality
英文摘要This paper deals with optimal control problems for semilinear parabolic differential equations, which may be governed by nonmonotone operators and have no global solution, with periodic inputs. The Pontryagin maximum principle is obtained and the Carleman inequality for the backward linearized adjoint system associated with the state system is established.
WOS标题词Science & Technology ; Technology ; Physical Sciences
类目[WOS]Operations Research & Management Science ; Mathematics, Applied
研究领域[WOS]Operations Research & Management Science ; Mathematics
关键词[WOS]POINT BOUNDARY-CONDITIONS ; HEAT-EQUATION ; CONTROLLABILITY
收录类别SCI
语种英语
WOS记录号WOS:000185012400011
公开日期2015-12-08
源URL[http://ir.wipm.ac.cn/handle/112942/8814]  
专题武汉物理与数学研究所_2011年以前论文发表(包括2011年)
作者单位1.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan, Peoples R China
2.Huazhong Normal Univ, Dept Math, Wuhan, Peoples R China
推荐引用方式
GB/T 7714
Wang, G,Wang, L. The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations[J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS,2003,118(2):429-461.
APA Wang, G,&Wang, L.(2003).The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations.JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS,118(2),429-461.
MLA Wang, G,et al."The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations".JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 118.2(2003):429-461.

入库方式: OAI收割

来源:武汉物理与数学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。