中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Pauli paramagnetism of an ideal Fermi gas within canonical ensemble

文献类型:期刊论文

作者Xiong, HW; Liu, SJ; Huang, GX
刊名PHYSICS LETTERS A
出版日期2003-11-10
卷号318期号:3页码:281-286
关键词ideal Fermi gas canonical ensemble Pauli paramagnetism probability distribution fluctuations
英文摘要Thermodynamic properties of an ideal Fermi gas in a uniform external magnetic field are investigated within canonical ensemble. By using the saddle point method, a simple method is proposed to calculate the probability distribution function of the system. The probability distribution function is used to calculate the thermodynamic properties of the system, such as the average value and fluctuations of the net magnetic moment and susceptibility. For a finite number of fermions, through the analysis of the fluctuations, it is shown that the strength of the external magnetic field should be larger than a critical magnetic field strength to observe the phenomenon of Pauli paramagnetism. (C) 2003 Elsevier B.V. All rights reserved.
WOS标题词Science & Technology ; Physical Sciences
类目[WOS]Physics, Multidisciplinary
研究领域[WOS]Physics
收录类别SCI
语种英语
WOS记录号WOS:000186427300013
公开日期2015-12-08
源URL[http://ir.wipm.ac.cn/handle/112942/8910]  
专题武汉物理与数学研究所_2011年以前论文发表(包括2011年)
作者单位1.Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
2.Zhejiang Univ Technol, Dept Appl Phys, Hangzhou 310032, Peoples R China
3.E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China
推荐引用方式
GB/T 7714
Xiong, HW,Liu, SJ,Huang, GX. Pauli paramagnetism of an ideal Fermi gas within canonical ensemble[J]. PHYSICS LETTERS A,2003,318(3):281-286.
APA Xiong, HW,Liu, SJ,&Huang, GX.(2003).Pauli paramagnetism of an ideal Fermi gas within canonical ensemble.PHYSICS LETTERS A,318(3),281-286.
MLA Xiong, HW,et al."Pauli paramagnetism of an ideal Fermi gas within canonical ensemble".PHYSICS LETTERS A 318.3(2003):281-286.

入库方式: OAI收割

来源:武汉物理与数学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。