中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
  • 会议论文 [1]
发表日期
  • 2005 [1]
学科主题
筛选

浏览/检索结果: 共1条,第1-1条 帮助

限定条件        
条数/页: 排序方式:
Measuring the system gain of the TDI CCD remote sensing camera (EI CONFERENCE) 会议论文  OAI收割
Advanced Materials and Devices for Sensing and Imaging II, November 8, 2004 - November 10, 2004, Beijing, China
Ya-xia L.; Hai-ming B.; Jie L.; Jin R.; Zhi-hang H.
收藏  |  浏览/下载:52/0  |  提交时间:2013/03/25
The gain of a TDI CCD camera is the conversion between the number of electrons recorded by the TDI CCD and the number of digital units (counts) contained in the CCD image"[1]. TDI CCD camera has been a main technical approach for meeting the requirements of high-resolution and lightweight of remote sensing equipment. It is useful to know this conversion for evaluating the performance of the TDI CCD camera. In general  a lower gain is better. However  the resulting slope is the gain of the TDI CCD. We did the experiments using the Integration Sphere in order to get a flat field effects. We calculated the gain of the four IT-EI-2048 TDI CCD. The results and figures of the four TDI CCD are given.  this is only true as long as the total well depth (number of electrons that a pixel can hold) of the pixels can be represented. High gains result in higher digitization noise. System gains are designed to be a compromise between the extremes of high digitization noise and loss of well depth. In this paper  the mathematical theory is given behind the gain calculation on a TDI CCD camera and shows how the mathematics suggests ways to measure the gain accurately according to the Axiom Tech. The gains were computed using the mean-variance method  also known as the method of photon transfer curves. This method uses the effect of quantization on the variance in the measured counts over a uniformly illuminated patch of the detector. This derivation uses the concepts of signal and noise. A linear fit is done of variance vs. mean