中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究... [13]
武汉植物园 [4]
采集方式
OAI收割 [17]
_filter
_filter
_filter
筛选
浏览/检索结果:
共17条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
作者升序
作者降序
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
Spatial-Temporal Analysis of Greenness and Its Relationship with Poverty in China
期刊论文
OAI收割
REMOTE SENSING, 2024, 卷号: 16, 期号: 21, 页码: 3938
作者:
Xie, Wentong
;
Ge, Yong
;
Hamm, Nicholas A. S.
;
Foody, Giles M.
;
Ren, Zhoupeng
  |  
收藏
  |  
浏览/下载:7/0
  |  
提交时间:2024/12/20
greenness
geostatistics
poverty-stricken areas
driving factors
Resolving data gaps in global surface water monthly records through a self-supervised deep learning strategy
期刊论文
OAI收割
JOURNAL OF HYDROLOGY, 2024, 卷号: 640, 页码: 13
作者:
Hao, Zhen
;
Cai, Xiaobin
;
Ge, Yong
;
Foody, Giles
;
Li, Xinyan
  |  
收藏
  |  
浏览/下载:11/0
  |  
提交时间:2024/10/08
JRC GSW
Deep learning
Water area mapping
Gap filling
Seasonal water
DeepWaterFraction: A globally applicable, self-training deep learning approach for percent surface water area estimation from Landsat mission imagery
期刊论文
OAI收割
JOURNAL OF HYDROLOGY, 2024, 卷号: 638, 页码: 13
作者:
Hao, Zhen
;
Foody, Giles
;
Ge, Yong
;
Cai, Xiaobin
;
Du, Yun
  |  
收藏
  |  
浏览/下载:9/0
  |  
提交时间:2024/10/08
Surface Water Area Estimation
Landsat Mission Imagery
Small Water Bodies Monitoring
River Discharge Inversion
DeepWaterFraction (DWF)
Object-Based Area-to-Point Regression Kriging for Pansharpening
期刊论文
OAI收割
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 卷号: 59, 期号: 10, 页码: 8599-8614
作者:
Zhang, Yihang
;
Atkinson, Peter M.
;
Ling, Feng
;
Foody, Giles M.
;
Wang, Qunming
  |  
收藏
  |  
浏览/下载:55/0
  |  
提交时间:2021/11/05
Downscaling
geostatistics
image fusion
object-based
pansharpening
segmentation
Tracking small-scale tropical forest disturbances: Fusing the Landsat and Sentinel-2 data record
期刊论文
OAI收割
REMOTE SENSING OF ENVIRONMENT, 2021, 卷号: 261, 页码: 17
作者:
Zhang, Yihang
;
Ling, Feng
;
Wang, Xia
;
Foody, Giles M.
;
Boyd, Doreen S.
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2021/08/19
Forest disturbance
Small-scale clearing
Landsat and Sentinel-2
Deep learning
Downscaling
Monitoring surface water area variations of reservoirs using daily MODIS images by exploring sub-pixel information
期刊论文
OAI收割
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 卷号: 168, 页码: 141-152
作者:
Ling, Feng
;
Li, Xinyan
;
Foody, Giles M.
;
Boyd, Doreen
;
Ge, Yong
  |  
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2021/03/16
MODIS
Sub-pixel analysis
Surface water
Reservoir area
Monitoring surface water area variations of reservoirs using daily MODIS images by exploring sub-pixel information
期刊论文
OAI收割
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 卷号: 168, 页码: 141-152
作者:
Ling, Feng
;
Li, Xinyan
;
Foody, Giles M.
;
Boyd, Doreen
;
Ge, Yong
  |  
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2021/03/16
MODIS
Sub-pixel analysis
Surface water
Reservoir area
SFSDAF: An enhanced FSDAF that incorporates sub-pixel class fraction change information for spatio-temporal image fusion
期刊论文
OAI收割
REMOTE SENSING OF ENVIRONMENT, 2020, 卷号: 237, 页码: 15
作者:
Li, Xiaodong
;
Foody, Giles M.
;
Boyd, Doreen S.
;
Ge, Yong
;
Zhang, Yihang
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2020/05/19
Spatio-temporal image fusion
Land cover class fraction
FSDAF
Permanent disappearance and seasonal fluctuation of urban lake area in Wuhan, China monitored with long time series remotely sensed images from 1987 to 2016
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 卷号: 40, 期号: 22, 页码: 8484-8505
作者:
Shi, Lingfei
;
Ling, Feng
;
Foody, Giles M.
;
Chen, Cheng
;
Fang, Shiming
  |  
收藏
  |  
浏览/下载:77/0
  |  
提交时间:2019/10/17
Spatial-Temporal Super-Resolution Land Cover Mapping With a Local Spatial-Temporal Dependence Model
期刊论文
OAI收割
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 卷号: 57, 期号: 7, 页码: 4951-4966
作者:
Li, Xiaodong
;
Ling, Feng
;
Foody, Giles M.
;
Ge, Yong
;
Zhang, Yihang
  |  
收藏
  |  
浏览/下载:73/0
  |  
提交时间:2019/09/24
Image series
spatial dependence
super-resolution mapping (SRM)
temporal dependence