中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [11]
数学与系统科学研究院 [4]
采集方式
OAI收割 [15]
内容类型
期刊论文 [10]
会议论文 [5]
发表日期
2019 [1]
2018 [2]
2017 [1]
2016 [7]
2015 [4]
学科主题
Automation... [1]
Engineerin... [1]
模式识别与智能系统 [1]
筛选
浏览/检索结果:
共15条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Salient object detection based on an efficient End-to-End Saliency Regression Network
期刊论文
OAI收割
NEUROCOMPUTING, 2019, 卷号: 323, 期号: 1, 页码: 265-276
作者:
Xi, Xuanyang
;
Luo, Yongkang
;
Wang, Peng
;
Qiao, Hong
  |  
收藏
  |  
浏览/下载:64/0
  |  
提交时间:2019/01/08
Salient object detection
Saliency regression
Deep convolutional neural networks
Fully convolutional networks
A Novel Manifold Regularized Online Semi-supervised Learning Model
期刊论文
OAI收割
COGNITIVE COMPUTATION, 2018, 卷号: 10, 期号: 1, 页码: 49-61
作者:
Ding, Shuguang
;
Xi, Xuanyang
;
Liu, Zhiyong
;
Qiao, Hong
;
Zhang, Bo
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2018/07/30
Human learning
Manifold regularization
Online semi-supervised learning
Lagrange dual problem
A Novel Manifold Regularized Online Semi-supervised Learning Model
期刊论文
OAI收割
COGNITIVE COMPUTATION, 2018, 卷号: 10, 期号: 1, 页码: 49-61
作者:
Ding, Shuguang
;
Xi, Xuanyang
;
Liu, Zhiyong
;
Qiao, Hong
;
Zhang, Bo
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2018/10/10
Human Learning
Manifold Regularization
Online Semi-supervised Learning
Lagrange Dual Problem
Image Deno sing via Multiscale Nonlinear Diffusion Models
期刊论文
OAI收割
SIAM JOURNAL ON IMAGING SCIENCES, 2017, 卷号: 10, 期号: 3, 页码: 1234-1257
作者:
Feng, Wensen
;
Qiao, Peng
;
Xi, Xuanyang
;
Chen, Yunjin
  |  
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2018/03/03
Image Denoising
Multiscale Pyramid Image Representation
Trainable Nonlinear Reaction Diffusion Model
Gaussian Denoising
Poisson Denoising
Biologically Inspired Model for Visual Cognition Achieving Unsupervised Episodic and Semantic Feature Learning
期刊论文
OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2016, 卷号: 46, 期号: 10, 页码: 2335-2347
作者:
Qiao, Hong
;
Li, Yinlin
;
Li, Fengfu
;
Xi, Xuanyang
;
Wu, Wei
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2018/07/30
Biologically inspired
hierarchical model
key components learning
semantic description
Biologically Inspired Model for Visual Cognition Achieving Unsupervised Episodic and Semantic Feature Learning
期刊论文
OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2016, 卷号: 46, 期号: 10, 页码: 2335-2347
作者:
Qiao, Hong
;
Li, Yinlin
;
Li, Fengfu
;
Xi, Xuanyang
;
Wu, Wei
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2016/06/21
Biologically inspired
hierarchical model
key components learning
semantic description
A biologically inspired model mimicking the memory and two distinct pathways of face perception
期刊论文
OAI收割
NEUROCOMPUTING, 2016, 卷号: 205, 页码: 349-359
作者:
Xi, Xuanyang
;
Yin, Peijie
;
Qiao, Hong
;
Li, Yinlin
;
Feng, Wensen
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2018/07/30
Biologically inspired model (BIM)
Face perception
Memory
Component-based
A biologically inspired model mimicking the memory and two distinct pathways of face perception
期刊论文
OAI收割
NEUROCOMPUTING, 2016, 卷号: 205, 页码: 349-359
作者:
Xi, Xuanyang
;
Yin, Peijie
;
Qiao, Hong
;
Li, Yinlin
;
Feng, Wensen
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2016/10/20
Biologically inspired model (BIM)
Face perception
Memory
Component-based
NFLB dropout: Improve generalization ability by dropping out the best -A biologically inspired adaptive dropout method for unsupervised learning
会议论文
OAI收割
2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24-29 July 2016
作者:
Peijie Yin
;
Lu Qi
;
Xuanyang Xi
;
Bo Zhang
;
Hong Qiao
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2017/01/13
none
A Novel Manifold Regularized Online Semi-supervised Learning Algorithm
会议论文
OAI收割
23rd International Conference on Neural Information Processing (ICONIP), Kyoto, JAPAN, OCT 16-21, 2016
作者:
Ding, Shuguang
;
Xi, Xuanyang
;
Liu, Zhiyong
;
Qiao, Hong
;
Zhang, Bo
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2017/01/13
Manifold regularization
Online semi-supervised learning
Lagrange dual problem