中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [1]
自动化研究所 [1]
沈阳自动化研究所 [1]
软件研究所 [1]
采集方式
OAI收割 [4]
内容类型
会议论文 [2]
学位论文 [1]
期刊论文 [1]
发表日期
2014 [1]
2010 [1]
2009 [1]
2008 [1]
学科主题
Computer S... [1]
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
An improved multi-scale autoconvolution transform
会议论文
OAI收割
Beijing, China, May 13-15, 2014
作者:
Shao CY(邵春艳)
;
Ding QH(丁庆海)
;
Luo HB(罗海波)
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2014/12/29
Affine Invariant Feature
Multi-scale Autoconvolution
N-domain Vectors Included Angle Map
N-domain Vectors
Angle Map
基于参数化求和不变量与特征重整的形状匹配
期刊论文
OAI收割
中国图象图形学报, 2010, 卷号: 15, 期号: 1, 页码: 122-128
吕玉增
;
彭启民
;
黎湘
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2011/05/23
形状匹配
仿射不变量
特征重整
动态规划shape matching
affine invariant
feature regulating
dynamic programming
图像特征检测及应用
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2009
作者:
戴志军
收藏
  |  
浏览/下载:69/0
  |  
提交时间:2015/09/02
特征检测
仿射不变
边缘检测
聚焦区域
角点检测
图像质量评价
特征匹配
feature detection
affine invariant
edge detection
focused region
corner detection
image quality assessment
feature matching
Mean shift tracking combining SIFT (EI CONFERENCE)
会议论文
OAI收割
2008 9th International Conference on Signal Processing, ICSP 2008, October 26, 2008 - October 29, 2008, Beijing, China
作者:
Xue C.
收藏
  |  
浏览/下载:67/0
  |  
提交时间:2013/03/25
A novel visual tracking algorithm to cope with occlusion and scale variation is proposed. This method combines mean shift and SIFT algorithm to track object. SIFT algorithm is invariant to rotation
translation and scale variation. But it is a timeconsuming algorithm. The wasting time is related to image size. So the proposed algorithm first adopts mean shift to initially locate object position
then SIFT operator is used to detect features in object area and model area
lastly
the proposed method matches features in these two areas and calculates the relationship between them using affine transform. According to affine transform parameters
the state of object can be adjusted in time. In order to reduce process time
an improved feature matching algorithm is proposed in this paper. Experiments show that the proposed algorithm deals with occlusion successfully and can adjust object size in time. 2008 IEEE.