中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [3]
长春光学精密机械与物... [2]
力学研究所 [1]
计算技术研究所 [1]
遥感与数字地球研究所 [1]
沈阳自动化研究所 [1]
更多
采集方式
OAI收割 [10]
内容类型
会议论文 [5]
期刊论文 [5]
发表日期
2023 [1]
2021 [1]
2019 [2]
2015 [1]
2012 [2]
2011 [2]
更多
学科主题
筛选
浏览/检索结果:
共10条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Multi-source underwater DOA estimation using PSO-BP neural network based on high-order cumulant optimization
期刊论文
OAI收割
CHINA COMMUNICATIONS, 2023, 页码: 18
作者:
Chen, Haihua
;
Zhang, Jingyao
;
Jiang, Bin
;
Cui, Xuerong
;
Zhou, Rongrong
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2023/12/04
Direction-of-arrival estimation
Estimation
Neural networks
Mathematical models
Training
Covariance matrices
Biological neural networks
particle swarm optimization (PSO) algorithm
PSO-BP neural network
gaussian colored noise
multiple sources
higher-order cumulant
Analysis and prediction of high-speed train wheel wear based on SIMPACK and backpropagation neural networks
期刊论文
OAI收割
EXPERT SYSTEMS, 2021, 卷号: 38, 期号: 7, 页码: 11
作者:
Wang, Shuwen
;
Yan, Hao
;
Liu, Caixia
;
Fan, Ning
;
Liu XM(刘小明)
  |  
收藏
  |  
浏览/下载:48/0
  |  
提交时间:2021/11/01
BP neural networks
high-speed train
SIMPACK
wheel wear
Delineation of soil contaminant plumes at a co-contaminated site using BP neural networks and geostatistics
期刊论文
OAI收割
GEODERMA, 2019, 卷号: 354, 页码: 9
作者:
Tao, Huan
;
Liao, Xiaoyong
;
Zhao, Dan
;
Gong, Xuegang
;
Cassidy, Daniel P.
  |  
收藏
  |  
浏览/下载:75/0
  |  
提交时间:2020/03/23
Co-contaminated sites
Arsenic
PAHs
Backpropagation (BP) neural networks
Geostatistics
Nemerow pollution index
Delineation of soil contaminant plumes at a co-contaminated site using BP neural networks and geostatistics
期刊论文
OAI收割
GEODERMA, 2019, 卷号: 354, 页码: 9
作者:
Tao, Huan
;
Liao, Xiaoyong
;
Zhao, Dan
;
Gong, Xuegang
;
Cassidy, Daniel P.
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2020/03/23
Co-contaminated sites
Arsenic
PAHs
Backpropagation (BP) neural networks
Geostatistics
Nemerow pollution index
Day-ahead hourly photovoltaic generation forecasting using extreme learning machine
会议论文
OAI收割
2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, June 8-12, 2015
作者:
Li ZW(李忠文)
;
Zang CZ(臧传治)
;
Zeng P(曾鹏)
;
Yu HB(于海斌)
;
Li HP(李鹤鹏)
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2015/12/19
BP Neural Networks
Day-ahead
Photovoltaic
Forecasting
Extreme Learning Machine
An improved hyperspectral classification algorithm based on back-propagation neural networks (EI CONFERENCE)
会议论文
OAI收割
2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2012, June 1, 2012 - June 3, 2012, Nanjing, China
作者:
Yu P.
;
Yu P.
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2013/03/25
In this paper
a new method is proposed to improve the classification performance of hyperspectral images by combining the principal component analysis (PCA)
genetic algorithm (GA)
and artificial neural networks (ANNs). First
some characteristics of the hyperspectral remotely sensed data
such as high correlation
high redundancy
etc.
are investigated. Based on the above analysis
we propose to use the principal component analysis to capture the main information existing in the hyperspectral images and reduce its dimensionality consequently. Next
we use neural networks to classify the reduced hyperspectral data. Since the back-propagation neural network we used is easy to suffer from the local minimum problem
we adopt a genetic algorithm to optimize the BP network's weights and the threshold. Experimental results show that the classification accuracy is improved and the time of calculation is reduced as well. 2012 IEEE.
On grass yield remote sensing estimation models of China's northern farming-pastoral ecotone
会议论文
OAI收割
Advances in Intelligent and Soft Computing, 2012
作者:
Zhu Xiaohua
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2012/12/01
Estimation
Models
Monitoring
nasa
Neural networks
Nonlinear systems
Remote sensing
Vegetation
BP neural network model
BP neural networks
China's northern farming-pastoral ecotone
Estimation models
Grass yield
Non-linear model
Sample data
Vegetation index
Yield conditions
Yield estimation
Double inverted pendulum control based on three-loop PID and improved BP neural network (EI CONFERENCE)
会议论文
OAI收割
2011 2nd International Conference on Digital Manufacturing and Automation, ICDMA 2011, August 5, 2011 - August 7, 2011, Zhangjiajie, Hunan, China
作者:
Fan Y.
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2013/03/25
To deal with the defects of BP neural networks used in balance control of inverted pendulum
such as longer train time and converging in partial minimum
this article reaLizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks(ANN)
builds up a training model of test simulation and the BP network is 6-10-1 structure. Tansig function is used in hidden layer and PureLin function is used in output layer
LM is used in training algorithm. The training data is acquried by three-loop PID algorithm. The model is learned and trained with Matlab calculating software
and the simuLink simulation experiment results prove that improved BP algorithm for inverted pendulum control has higher precision
better astringency and lower calculation. This algorithm has wide appLication on nonLinear control and robust control field in particular. 2011 IEEE.
CORRELATION BETWEEN PM CONCENTRATIONS AND AEROSOL OPTICAL DEPTH IN EASTERN CHINA BASED ON BP NEURAL NETWORKS
会议论文
OAI收割
2011 Ieee International Geoscience and Remote Sensing Symposium, New York
Wu, Yerong
;
Guo, Jianping
;
Zhang, Xin
;
Li, Xiaowen
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2014/12/07
PM
MODIS
BP Neural Networks
PBLH
PARTICULATE MATTER
URBAN AIR
THICKNESS
PM2.5
S02 Emission Characteristics and BP Neural Networ Prediction in MSW/Coal Co-Fired Fluidized Beds
期刊论文
OAI收割
JOURNAL OF THERMAL SCIENCE, 2006, 卷号: 15, 期号: 3, 页码: 281,288
Junming WENl1 2
;
Jianhua YAN1
;
Dongping ZHANG1 3
;
Yong CHI1
;
Mingjiang NI1
;
Kefa CEN1
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2013/01/31
municipal solid waste (MSW)
SO2 emission
fluidized bed
BP neural networks
prediction model.