中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共12条,第1-10条 帮助

条数/页: 排序方式:
Uncertainty-Aware Dual-Evidential Learning for Weakly-Supervised Temporal Action Localization 期刊论文  OAI收割
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 卷号: 45, 期号: 12, 页码: 15896-15911
作者:  
Chen, Mengyuan;  Gao, Junyu;  Xu, Changsheng
  |  收藏  |  浏览/下载:24/0  |  提交时间:2024/03/26
Estimating winter wheat yield by assimilation of remote sensing data with a four-dimensional variation algorithm considering anisotropic background error and time window 期刊论文  OAI收割
AGRICULTURAL AND FOREST METEOROLOGY, 2021, 卷号: 301, 页码: 16
作者:  
Wu, Shangrong;  Yang, Peng;  Chen, Zhongxin;  Ren, Jianqiang;  Li, He
  |  收藏  |  浏览/下载:51/0  |  提交时间:2021/06/10
Unsupervised Domain Adaptation with Background Shift Mitigating for Person Re-Identification 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 页码: 20
作者:  
Huang, Yan;  Wu, Qiang;  Xu, Jingsong;  Zhong, Yi;  Zhang, Zhaoxiang
  |  收藏  |  浏览/下载:74/0  |  提交时间:2021/08/15
Space Debris Detection Using Feature Learning of Candidate Regions in Optical Image Sequences 期刊论文  OAI收割
IEEE ACCESS, 2020, 卷号: 8, 页码: 150864-150877
作者:  
Xi, Jiangbo;  Xiang, Yaobing;  Ersoy, Okan K.;  Cong, Ming;  Wei, Xin
  |  收藏  |  浏览/下载:41/0  |  提交时间:2020/10/23
Background Subtraction With Real-Time Semantic Segmentation 期刊论文  OAI收割
Ieee Access, 2019, 卷号: 7, 页码: 153869-153884
作者:  
D.D.Zeng;  X.Chen;  M.Zhu;  M.Goesele;  A.Kuijper
  |  收藏  |  浏览/下载:30/0  |  提交时间:2020/08/24
Small target detection based on reweighted infrared patch-image model 期刊论文  OAI收割
IET IMAGE PROCESSING, 2018, 卷号: 12, 期号: 1, 页码: 70-79
作者:  
Guo, Jun;  Wu, Yiquan;  Dai, Yimian
  |  收藏  |  浏览/下载:73/0  |  提交时间:2018/12/12
Background Subtraction Using Multiscale Fully Convolutional Network 期刊论文  OAI收割
Ieee Access, 2018, 卷号: 6, 页码: 16010-16021
作者:  
Zeng, D. D.;  Zhu, M.
  |  收藏  |  浏览/下载:21/0  |  提交时间:2019/09/17
Combining depth and gray images for fast 3D object recognition 会议论文  OAI收割
International Symposium on Optical Measurement Technology and Instrumentation, Beijing, China, May 9-11, 2016
作者:  
Pan W(潘旺);  Zhu F(朱枫);  Hao YM(郝颖明)
收藏  |  浏览/下载:17/0  |  提交时间:2017/01/14
基于背景估计和边缘检测的文档图像二值化 期刊论文  OAI收割
计算机应用与软件, 2014, 卷号: 31, 期号: 8, 页码: 196-200
许海洋; 马龙龙; 吴健
  |  收藏  |  浏览/下载:41/0  |  提交时间:2014/12/16
The new approach for infrared target tracking based on the particle filter algorithm (EI CONFERENCE) 会议论文  OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications, May 24, 2011 - May 24, 2011, Beijing, China
作者:  
Sun H.;  Han H.-X.;  Sun H.
收藏  |  浏览/下载:59/0  |  提交时间:2013/03/25
Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring  precision  and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection  the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure  but in order to capture the change of the state space  it need a certain amount of particles to ensure samples is enough  and this number will increase in accompany with dimension and increase exponentially  this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining"  we expand the classic Mean Shift tracking framework.Based on the previous perspective  we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis  Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism  used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation  and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value.Last because of the gray and fusion target motion information  this approach also inhibit interference from the background  ultimately improve the stability and the real-time of the target track. 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).