中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [4]
自动化研究所 [2]
沈阳自动化研究所 [2]
西安光学精密机械研究... [2]
地理科学与资源研究所 [1]
软件研究所 [1]
更多
采集方式
OAI收割 [12]
内容类型
期刊论文 [9]
会议论文 [3]
发表日期
2023 [1]
2021 [2]
2020 [1]
2019 [1]
2018 [2]
2016 [1]
更多
学科主题
筛选
浏览/检索结果:
共12条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Uncertainty-Aware Dual-Evidential Learning for Weakly-Supervised Temporal Action Localization
期刊论文
OAI收割
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 卷号: 45, 期号: 12, 页码: 15896-15911
作者:
Chen, Mengyuan
;
Gao, Junyu
;
Xu, Changsheng
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2024/03/26
Uncertainty
Background noise
Task analysis
Location awareness
Measurement uncertainty
Interference
Predictive models
Weakly-supervised temporal action localization
evidential deep learning
uncertainty estimation
Estimating winter wheat yield by assimilation of remote sensing data with a four-dimensional variation algorithm considering anisotropic background error and time window
期刊论文
OAI收割
AGRICULTURAL AND FOREST METEOROLOGY, 2021, 卷号: 301, 页码: 16
作者:
Wu, Shangrong
;
Yang, Peng
;
Chen, Zhongxin
;
Ren, Jianqiang
;
Li, He
  |  
收藏
  |  
浏览/下载:51/0
  |  
提交时间:2021/06/10
Data assimilation
Crop yield estimation
Remotely sensed LAI
Background error
Time window
Anisotropic
Unsupervised Domain Adaptation with Background Shift Mitigating for Person Re-Identification
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 页码: 20
作者:
Huang, Yan
;
Wu, Qiang
;
Xu, Jingsong
;
Zhong, Yi
;
Zhang, Zhaoxiang
  |  
收藏
  |  
浏览/下载:74/0
  |  
提交时间:2021/08/15
Person re-identification
Unsupervised domain adaptation
Background suppression
Image generation
Virtual label estimation
Space Debris Detection Using Feature Learning of Candidate Regions in Optical Image Sequences
期刊论文
OAI收割
IEEE ACCESS, 2020, 卷号: 8, 页码: 150864-150877
作者:
Xi, Jiangbo
;
Xiang, Yaobing
;
Ersoy, Okan K.
;
Cong, Ming
;
Wei, Xin
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2020/10/23
Space debris
Feature extraction
Machine learning
Signal to noise ratio
Object detection
Image sequences
Optical imaging
Space debris detection
background estimation
candidate region extraction
deep learning
Background Subtraction With Real-Time Semantic Segmentation
期刊论文
OAI收割
Ieee Access, 2019, 卷号: 7, 页码: 153869-153884
作者:
D.D.Zeng
;
X.Chen
;
M.Zhu
;
M.Goesele
;
A.Kuijper
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2020/08/24
Background subtraction,foreground object detection,semantic,segmentation,video surveillance,density-estimation,Computer Science,Engineering,Telecommunications
Small target detection based on reweighted infrared patch-image model
期刊论文
OAI收割
IET IMAGE PROCESSING, 2018, 卷号: 12, 期号: 1, 页码: 70-79
作者:
Guo, Jun
;
Wu, Yiquan
;
Dai, Yimian
  |  
收藏
  |  
浏览/下载:73/0
  |  
提交时间:2018/12/12
Object Detection
Infrared Imaging
Principal Component Analysis
Small Target Detection
Reweighted Infrared Patch-image Model
Infrared Small Target Detection
Sparse Background Edges
Background Estimation
Reweighted Nuclear Norm
Nontarget Sparse Points
Reweighted Robust Principal Component Analysis Problem
Inexact Augmented Lagrangian Multiplier Method
Background Clutter Suppression
Reweighted l(1) Norm
Background Subtraction Using Multiscale Fully Convolutional Network
期刊论文
OAI收割
Ieee Access, 2018, 卷号: 6, 页码: 16010-16021
作者:
Zeng, D. D.
;
Zhu, M.
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2019/09/17
Background subtraction
convolutional neural network
multiscale fully
convolutional network
video surveillance
density-estimation
Computer Science
Engineering
Telecommunications
Combining depth and gray images for fast 3D object recognition
会议论文
OAI收割
International Symposium on Optical Measurement Technology and Instrumentation, Beijing, China, May 9-11, 2016
作者:
Pan W(潘旺)
;
Zhu F(朱枫)
;
Hao YM(郝颖明)
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2017/01/14
Depth Image
3D object recognition
pose estimation
machine vision
robotics
background elimination
shape matching
基于背景估计和边缘检测的文档图像二值化
期刊论文
OAI收割
计算机应用与软件, 2014, 卷号: 31, 期号: 8, 页码: 196-200
许海洋
;
马龙龙
;
吴健
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2014/12/16
文档图像
二值化
背景估计
边缘检测
Canny
局部阈值法
Document image
Binarisation
Background estimation
Edge detection
Canny
Local threshold method
The new approach for infrared target tracking based on the particle filter algorithm (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications, May 24, 2011 - May 24, 2011, Beijing, China
作者:
Sun H.
;
Han H.-X.
;
Sun H.
收藏
  |  
浏览/下载:59/0
  |  
提交时间:2013/03/25
Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring
precision
and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection
the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure
but in order to capture the change of the state space
it need a certain amount of particles to ensure samples is enough
and this number will increase in accompany with dimension and increase exponentially
this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining"
we expand the classic Mean Shift tracking framework.Based on the previous perspective
we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis
Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism
used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation
and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value.Last because of the gray and fusion target motion information
this approach also inhibit interference from the background
ultimately improve the stability and the real-time of the target track. 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).