中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
金属研究所 [2]
长春光学精密机械与物... [1]
软件研究所 [1]
采集方式
OAI收割 [4]
内容类型
会议论文 [2]
期刊论文 [2]
发表日期
2022 [1]
2014 [1]
2012 [1]
2011 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Crystal plasticity model of induction heating-assisted incremental sheet forming with recrystallisation simulation in cellular automata
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 页码: 23
作者:
Li, Weining
;
Li, Sheng
;
Li, Xuexiong
;
Xu, Dongsheng
;
Shao, Yinghui
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2023/05/09
Ti-6Al-4 V thin sheet
Incremental sheet forming
Multi-scale modelling
Crystal plasticity
Cellular automata
Grain size
Crystallographic texture
Efficient texture synthesis of aggregate solid material
会议论文
OAI收割
Shu, Yue (1)
;
Qian, Yinling (3)
;
Sun, Hanqiu (3)
;
Chen, Yanyun (1)
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2014/12/16
Aggregate material
Solid texture
Cellular texture
Stereology
Progress in mesoscopic modeling of microstructure evolution in steels
期刊论文
OAI收割
Science China-Technological Sciences, 2012, 卷号: 55, 期号: 2, 页码: 341-356
N. M. Xiao
;
Y. Chen
;
D. Z. Li
;
Y. Y. Li
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2013/02/05
microstructure evolution
steel
phase field
cellular automaton
Monte
Carlo
phase-field model
low-carbon steel
austenite-ferrite transformation
cellular-automaton method
monte-carlo-simulation
fe-c alloys
goss
texture development
state wetting analysis
abnormal grain-growth
fe-3-percent si steel
TextureGrow: Object recognition and segmentation with limit prior knowledge (EI CONFERENCE)
会议论文
OAI收割
2011 International Conference on Network Computing and Information Security, NCIS 2011, May 14, 2011 - May 15, 2011, Guilin, Guangxi, China
Yao Z.
;
Han Q.
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2013/03/25
In this paper we present a new method for automatically visual recognition and semantic segmentation of photographs. Our automatically and rapidly approach based on Cellular Automation. Most of the analysis and description of recognition and segmentation are based on statistical or structural properties of this attribute
most of them need plenty of samples and prior Knowledge. In this paper
within a few evident samples (not too many)
we can first get the texture feature of each component and the structures
then select the approximately location randomly of the objects or patches of them
then we use the Cellular Automata algorithm to "grow" based on texture of different objects. The grow progress will stop When texture grow to the boundary. By this steps a new method is found which allow us use very few samples and low lever experience and get a rapidly and accuracy way to recognize and segment objects. We found that this new propose gives competitive results with limited experience and samples. 2011 IEEE.