中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共8条,第1-8条 帮助

条数/页: 排序方式:
A Micro-Multispectral Vision Sensor: Research on on-line measurement classification and recognition method of coal gangue 会议论文  OAI收割
Beijing, China, 2023-07-25
作者:  
Guo, Quan;  Liu, Ruqi;  Wu, Dengshan;  Yu, Weixing
  |  收藏  |  浏览/下载:13/0  |  提交时间:2024/02/07
面向自动化学科中文期刊论文的文本挖掘系统 学位论文  OAI收割
工程硕士, 中国科学院自动化研究所: 中国科学院研究生院, 2012
作者:  
刘禹
收藏  |  浏览/下载:73/0  |  提交时间:2015/09/02
基于机器视觉的钕铁硼表面缺陷检测系统 学位论文  OAI收割
工学硕士, 中国科学院自动化研究所: 中国科学院研究生院, 2012
吴亮
收藏  |  浏览/下载:163/0  |  提交时间:2015/09/02
On hyperspectral remotely sensed image classification based on MNF and AdaBoosting (EI CONFERENCE) 会议论文  OAI收割
2012 3rd IEEE/IET International Conference on Audio, Language and Image Processing, ICALIP 2012, July 16, 2012 - July 18, 2012, Shanghai, China
作者:  
Yu P.;  Yu P.;  Gao X.
收藏  |  浏览/下载:23/0  |  提交时间:2013/03/25
图像目标检测与识别技术研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2010
作者:  
夏晓珍
收藏  |  浏览/下载:224/0  |  提交时间:2015/09/02
Using bidirectional binary particle swarm optimization for feature selection in feature-level fusion recognition system (EI CONFERENCE) 会议论文  OAI收割
2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, May 25, 2009 - May 27, 2009, Xi'an, China
作者:  
Wang D.;  Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.
收藏  |  浏览/下载:24/0  |  提交时间:2013/03/25
In feature-level fusion recognition system  the other is optimizing system sensor design to get outstanding cost performance. So feature selection become usually necessary to reduce dimensionality of the combination of multi-sensor features and improve system performance in system design. In general  there are two main missions. One is improving the recognition correct rate as soon as possible  the optimization is usually applied to feature selection because of its computational feasibility and validity. For further improving recognition accuracy and reducing selected feature dimensions  this paper presents a more rational and accurate optimization  Bidirectional Binary Particle Swarm Optimization (BBPSO) algorithm for feature selection in feature-level fusion target recognition system. In addition  we introduce a new evaluating function as criterion function in BBPSO feature selection method. At the last  we utilized Leave-One-Out method to validate the proposed method. The experiment results show that the proposed algorithm improves classification accuracy by two percentage points  while the selected feature dimensions are less one dimension than original Particle Swarm Optimization approach with 16 original feature dimensions. 2009 IEEE.  
Infrared face recognition using linear subspace analysis (EI CONFERENCE) 会议论文  OAI收割
MIPPR 2009 - Pattern Recognition and Computer Vision: 6th International Symposium on Multispectral Image Processing and Pattern Recognition, October 30, 2009 - November 1, 2009, Yichang, China
作者:  
Wang D.
收藏  |  浏览/下载:35/0  |  提交时间:2013/03/25
Infrared image offers the main advantage over visible image of being invariant to illumination changes for face recognition. In this paper  based on the introduction of main methods of linear subspace analysis  such as Principal Component Analysis (PCA)  Linear Discriminant Analysis(LDA) and Fast Independent Component Analysis (FastICA)  the application of these methods to the recognition of infrared face images offered by OTCBVS workshop are investigated  and the advantages and disadvantages are compared. Experimental results show that the combination approach of PCA and LDA leads to better classification performance than single PCA approach or LDA approach  while the FastICA approach leads to the best classification performance with the improvement of nearly 5% compared with the combination approach. 2009 Copyright SPIE - The International Society for Optical Engineering.  
金融票据识别系统的应用研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:  
殷绪成
收藏  |  浏览/下载:63/0  |  提交时间:2015/09/02