中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
长春光学精密机械与物... [3]
西安光学精密机械研究... [1]
采集方式
OAI收割 [8]
内容类型
会议论文 [4]
学位论文 [4]
发表日期
2023 [1]
2012 [3]
2010 [1]
2009 [2]
2006 [1]
学科主题
筛选
浏览/检索结果:
共8条,第1-8条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A Micro-Multispectral Vision Sensor: Research on on-line measurement classification and recognition method of coal gangue
会议论文
OAI收割
Beijing, China, 2023-07-25
作者:
Guo, Quan
;
Liu, Ruqi
;
Wu, Dengshan
;
Yu, Weixing
  |  
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2024/02/07
Micro-Multispectral Vision Sensor
SVM
Classification and Recognition
Coal Gangue
面向自动化学科中文期刊论文的文本挖掘系统
学位论文
OAI收割
工程硕士, 中国科学院自动化研究所: 中国科学院研究生院, 2012
作者:
刘禹
收藏
  |  
浏览/下载:73/0
  |  
提交时间:2015/09/02
文本挖掘
文本分类
文本聚类
命名实体识别与消歧
知识服务
text mining
text classification
text clustering
name entity recognition and disambiguation
knowledge service
基于机器视觉的钕铁硼表面缺陷检测系统
学位论文
OAI收割
工学硕士, 中国科学院自动化研究所: 中国科学院研究生院, 2012
吴亮
收藏
  |  
浏览/下载:163/0
  |  
提交时间:2015/09/02
目标分割
特征提取
分类识别
凸缺陷分析
图像细化
Object Segmentation
Feature Extraction
Classification and Recognition
Convexity Defects Analysis
Image Thinning
On hyperspectral remotely sensed image classification based on MNF and AdaBoosting (EI CONFERENCE)
会议论文
OAI收割
2012 3rd IEEE/IET International Conference on Audio, Language and Image Processing, ICALIP 2012, July 16, 2012 - July 18, 2012, Shanghai, China
作者:
Yu P.
;
Yu P.
;
Gao X.
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2013/03/25
As an effective statistical learning tool
AdaBoosting has been widely used in the field of pattern recognition. In this paper
a new method is proposed to improve the classification performance of hyperspectral images by combining the minimum noise fraction (MNF) and AdaBoosting. Because the hyperspectral imagery has many bands which have strong correlation and high redundancy
the hyperspectral data are pre-processed by the minimum noise fraction to reduce the data's dimensionality
whilst to remove noise bands simultaneously. Then
we use an AdaBoost algorithm to conduct the classification of hyperspectral remotely sensed image. Experimental results show that the classification accuracy is improved and the time of calculation is reduced as well. 2012 IEEE.
图像目标检测与识别技术研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2010
作者:
夏晓珍
收藏
  |  
浏览/下载:224/0
  |  
提交时间:2015/09/02
目标检测与识别
分类识别
图像检索
局部特征
目标匹配
部件结构
级联分类器
多信息融合
语义上下文
广告分类
object detection and recognition
category recognition
image retrieval
local feature
object matching
part-based structure
cascade classifier
multi-information fusion
semantic context
ads classification
Using bidirectional binary particle swarm optimization for feature selection in feature-level fusion recognition system (EI CONFERENCE)
会议论文
OAI收割
2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, May 25, 2009 - May 27, 2009, Xi'an, China
作者:
Wang D.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2013/03/25
In feature-level fusion recognition system
the other is optimizing system sensor design to get outstanding cost performance. So feature selection become usually necessary to reduce dimensionality of the combination of multi-sensor features and improve system performance in system design. In general
there are two main missions. One is improving the recognition correct rate as soon as possible
the optimization is usually applied to feature selection because of its computational feasibility and validity. For further improving recognition accuracy and reducing selected feature dimensions
this paper presents a more rational and accurate optimization
Bidirectional Binary Particle Swarm Optimization (BBPSO) algorithm for feature selection in feature-level fusion target recognition system. In addition
we introduce a new evaluating function as criterion function in BBPSO feature selection method. At the last
we utilized Leave-One-Out method to validate the proposed method. The experiment results show that the proposed algorithm improves classification accuracy by two percentage points
while the selected feature dimensions are less one dimension than original Particle Swarm Optimization approach with 16 original feature dimensions. 2009 IEEE.
Infrared face recognition using linear subspace analysis (EI CONFERENCE)
会议论文
OAI收割
MIPPR 2009 - Pattern Recognition and Computer Vision: 6th International Symposium on Multispectral Image Processing and Pattern Recognition, October 30, 2009 - November 1, 2009, Yichang, China
作者:
Wang D.
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2013/03/25
Infrared image offers the main advantage over visible image of being invariant to illumination changes for face recognition. In this paper
based on the introduction of main methods of linear subspace analysis
such as Principal Component Analysis (PCA)
Linear Discriminant Analysis(LDA) and Fast Independent Component Analysis (FastICA)
the application of these methods to the recognition of infrared face images offered by OTCBVS workshop are investigated
and the advantages and disadvantages are compared. Experimental results show that the combination approach of PCA and LDA leads to better classification performance than single PCA approach or LDA approach
while the FastICA approach leads to the best classification performance with the improvement of nearly 5% compared with the combination approach. 2009 Copyright SPIE - The International Society for Optical Engineering.
金融票据识别系统的应用研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:
殷绪成
收藏
  |  
浏览/下载:63/0
  |  
提交时间:2015/09/02
金融票据识别系统
票据分类
字符切分与识别
特征集成
文档图像压缩
Financial Document Analysis and Recognition System
Form Classification
Character Segmentation and Recognition
Feature Combination
Document Image Coding