中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [2]
计算技术研究所 [1]
遥感与数字地球研究所 [1]
自动化研究所 [1]
合肥物质科学研究院 [1]
采集方式
OAI收割 [6]
内容类型
会议论文 [3]
期刊论文 [3]
发表日期
2022 [2]
2013 [1]
2012 [1]
2011 [1]
2006 [1]
学科主题
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement
期刊论文
OAI收割
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 卷号: 32, 期号: 7, 页码: 4138-4149
作者:
Zhao, Hengrun
;
Zheng, Bolun
;
Yuan, Shanxin
;
Zhang, Hua
;
Yan, Chenggang
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2022/12/07
Image coding
Quantization (signal)
Streaming media
Bit rate
Image restoration
Transform coding
Video recording
Quality enhancement
CBR compressed video
dual-domain restoration
Spatial frequency domain imaging technology based on Fourier single-pixel imaging
期刊论文
OAI收割
JOURNAL OF BIOMEDICAL OPTICS, 2022, 卷号: 27
作者:
Ren, Hui M.
;
Deng, Guoqing
;
Zhou, Peng
;
Kang, Xu
;
Zhang, Yang
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2022/03/21
Fourier single-pixel imaging
spatial frequency domain
optical properties
compressed sensing
Surveillance video synopsis in the compressed domain for fast video browsing
期刊论文
OAI收割
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2013, 卷号: 24, 期号: 8, 页码: 1431-1442
作者:
Wang, Shi-zheng
;
Wang, Zhong-yuan
;
Hu, Rui-min
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2015/09/23
Surveillance video
Compressed domain
Video synopsis
Video labeling
Scalable browsing
Fast browsing
Background modeling
Intelligent video
A simple and fast moving object segmentation based on H.264 compressed domain information (EI CONFERENCE)
会议论文
OAI收割
4th International Conference on Computational and Information Sciences, ICCIS 2012, August 17, 2012 - August 19, 2012, Chongqing, China
作者:
Chen X.
;
Chen X.
;
Chen X.
;
Sun L.
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2013/03/25
The paper presents a simple and fast approach for moving object segmentation based on H.264 compressed domain information for the application of indoor video surveillance with static camera. Due to the characteristics of indoor video surveillance
the proposed method of segmentation avoids complicated background model like Gaussian Mixture background model. On the contrary
it chooses some simple information like the type of Macroblock
etc.. Experimental results of several specific H.264 compressed video sequences demonstrate the good segmentation quality of the proposed approach. 2012 IEEE.
Tree Structure Matching Pursuit based on Gaussian Scale Mixtures model
会议论文
OAI收割
Applications of Digital Image Processing Xxxiv
Liu, Peng
;
Liu, Zhiwen
;
Wei, Jingbo
;
Liu, Dingsheng
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2014/12/07
Compressed Sensing
Gaussian Scale Mixtures
Orthogonal Matching Pursuit
SIGNAL RECONSTRUCTION
INVERSE PROBLEMS
WAVELET-DOMAIN
IMAGE
Wavelet packet and neural network basis medical image compression (EI CONFERENCE)
会议论文
OAI收割
4th International Conference on Photonics and Imaging in Biology and Medicine, September 3, 2005 - September 6, 2005, Tianjin, China
Zhao X.
;
Wei J.
;
Zhai L.
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2013/03/25
It is difficult to get high compression ratio and good reconstructed image by conventional methods
we give a new method of compression on medical image. It is to decompose and reconstruct the medical image by wavelet packet. Before the construction the image
use neural network in place of other coding method to code the coefficients in the wavelet packet domain. By using the Kohonen's neural network algorithm
not only for its vector quantization feature
but also for its topological property. This property allows an increase of about 80% for the compression rate. Compared to the JPEG standard
this compression scheme shows better performances (in terms of PSNR) for compression rates higher than 30. This method can get big compression ratio and perfect PSNR. Results show that the image can be compressed greatly and the original image can be recovered well. In addition
the approach can be realized easily by hardware.