中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共6条,第1-6条 帮助

条数/页: 排序方式:
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement 期刊论文  OAI收割
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 卷号: 32, 期号: 7, 页码: 4138-4149
作者:  
Zhao, Hengrun;  Zheng, Bolun;  Yuan, Shanxin;  Zhang, Hua;  Yan, Chenggang
  |  收藏  |  浏览/下载:35/0  |  提交时间:2022/12/07
Spatial frequency domain imaging technology based on Fourier single-pixel imaging 期刊论文  OAI收割
JOURNAL OF BIOMEDICAL OPTICS, 2022, 卷号: 27
作者:  
Ren, Hui M.;  Deng, Guoqing;  Zhou, Peng;  Kang, Xu;  Zhang, Yang
  |  收藏  |  浏览/下载:41/0  |  提交时间:2022/03/21
Surveillance video synopsis in the compressed domain for fast video browsing 期刊论文  OAI收割
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2013, 卷号: 24, 期号: 8, 页码: 1431-1442
作者:  
Wang, Shi-zheng;  Wang, Zhong-yuan;  Hu, Rui-min
收藏  |  浏览/下载:27/0  |  提交时间:2015/09/23
A simple and fast moving object segmentation based on H.264 compressed domain information (EI CONFERENCE) 会议论文  OAI收割
4th International Conference on Computational and Information Sciences, ICCIS 2012, August 17, 2012 - August 19, 2012, Chongqing, China
作者:  
Chen X.;  Chen X.;  Chen X.;  Sun L.
收藏  |  浏览/下载:15/0  |  提交时间:2013/03/25
Tree Structure Matching Pursuit based on Gaussian Scale Mixtures model 会议论文  OAI收割
Applications of Digital Image Processing Xxxiv
Liu, Peng; Liu, Zhiwen; Wei, Jingbo; Liu, Dingsheng
收藏  |  浏览/下载:27/0  |  提交时间:2014/12/07
Wavelet packet and neural network basis medical image compression (EI CONFERENCE) 会议论文  OAI收割
4th International Conference on Photonics and Imaging in Biology and Medicine, September 3, 2005 - September 6, 2005, Tianjin, China
Zhao X.; Wei J.; Zhai L.
收藏  |  浏览/下载:20/0  |  提交时间:2013/03/25
It is difficult to get high compression ratio and good reconstructed image by conventional methods  we give a new method of compression on medical image. It is to decompose and reconstruct the medical image by wavelet packet. Before the construction the image  use neural network in place of other coding method to code the coefficients in the wavelet packet domain. By using the Kohonen's neural network algorithm  not only for its vector quantization feature  but also for its topological property. This property allows an increase of about 80% for the compression rate. Compared to the JPEG standard  this compression scheme shows better performances (in terms of PSNR) for compression rates higher than 30. This method can get big compression ratio and perfect PSNR. Results show that the image can be compressed greatly and the original image can be recovered well. In addition  the approach can be realized easily by hardware.