中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [4]
西安光学精密机械研究... [1]
采集方式
OAI收割 [5]
内容类型
会议论文 [5]
发表日期
2011 [1]
2009 [1]
2008 [1]
2007 [2]
学科主题
筛选
浏览/检索结果:
共5条,第1-5条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Athermalization design of a dual field-of-view IR optical system
会议论文
OAI收割
2011 international conference on electronics and optoelectronics, iceoe 2011, dalian, china, july 29, 2011 - july 31, 2011
作者:
ZhouKe
;
YangJianfeng
;
TanTing
;
Tan Ting
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2012/07/09
Infrared optical system
Athermalization design
Dual field-ol-view
Cooled detector
Design of the infrared dual-band athermalized optical system based on HDE (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2009: Advances in Infrared Imaging and Applications, June 17, 2009 - June 19, 2009, Beijing, China
作者:
Zhang L.
;
Sun Q.
;
Wang H.
;
Wang H.
;
Wang H.
收藏
  |  
浏览/下载:97/0
  |  
提交时间:2013/03/25
A dual-band infrared optical system adopting an uncooled LW infrared detector and a cooled MW infrared detector is designed and manufactured
while in the LW IR band the F/# is 1 and the focal length is 114 mm
based on the athermal ability and special diffractive properties of harmonic diffractive elements. The design shows in the MW IR band the F/# is 2 and the focal length is 72 mm
for the temperature range -40 70 the MTF value is over 0.5 at 10 lp/mm. Finite element method is applied to the opto-mechanic structure of the system for thermal analysis
for the temperature range -40C 70C the MTF value is over 0.4 at 20 lp/mm
which confirms the imaging ability of the system in a wide temperature range. 2009 SPIE.
Design of a three field-of-view IR system (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging, ISPDI 2007: Optoelectronic System Design, Manufacturing, and Testings, September 9, 2007 - September 12, 2007, Beijing, China
作者:
Wang Y.
;
Jiang H.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
The design method and result are described for an infrared zoom system with three fields of view. Its zoom ratio is 9
and the corresponding field of view is 3-27. The working waveband is from 3 m to 5m
and using the rotated elements in the system it is easy to change the field-of-view and satisfied the cooled detector requirements.
and its total length is required to be no more than 400mm. The final optical system consists of 9 elements
with two aspheric surfaces and a diffractive optical element. It achieves diffraction-limited imaging at the middle infrared waveband. From the last result we can know using the diffractive optical elements can eliminate the color aberration and helps to reduce the cost of the system
Design of dual-FOV refractive/diffractive LWIR optical system (EI CONFERENCE)
会议论文
OAI收割
3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, AOMATT 2007: Advanced Optical Manufacturing Technologies, July 8, 2007 - July 12, 2007, Chengdu, China
作者:
Wang L.-J.
;
Zhang J.-P.
;
Wang L.-J.
;
Zhang X.
;
Zhang X.
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2013/03/25
An infrared-optical zoom system using binary element is proposed in this paper. The two main advantages of the zoom system introducing here are: bigger F-number and lower cost. The primary optical properties are: F/#=1
Second
Others
zoom ratio =1:4
binary element is used to correct the chromatical aberration by taking the advantage of negative dispersion characteristics and the cost of the system is lower than that of conventional ones with Zinc Selenide (Znse) material at the same level. In the binary element is rotational symmetric with one step which is easy to fabricate
in order to balance 5th spherical aberration
and dual field are 26.6 and 5.6respectively. Wider field of view is used for search and the smaller one is used for imaging details. This system uses un-cooled infrared detector with 320240 pixels and 45m pixel size. The F-number matches the sensitivity range of the detector array. Three aspects are considered during design process to make the system more satisfactory and more achievable. First
5th coma aberration and 5th astigmatic aberration
the manner of zoom is accomplished by exchanging tow lenses into the smaller field of view system layout. The lens exchange manner faces the requirement of simple system structure and good image quality in both focal points. It can also make the system more feasible in the alignment process than mechanical-zooming manner and optical-zooming manner
high-order asphere surfaces with 2th order to 10 th order are also hired in the system. Asphere surface is useful in compressing the system and improving optical system transmittance. This kind asphere surface is on industrial level featuring low cost and easy to fabricate. It is shown that good image quality can achieved by implementing five Germanium lenses and the transmittance of system is 72%. All aberrations are diffraction-limited
both spherical aberration and astigmatic aberration are corrected. When the field of view(FOV) is 26.6 and the focal length is 152mm
MTF at Nyquist frequency(11lp/mm) is great than 0.7. The spherical aberration is -0.0073. The coma aberration is 0.0978 and the astigmatic aberration is -0.013. When the field of view(FOV) is 5.6 and the focal length is 38mm
MTF at Nyquist frequency is great than 0.8 with spherical aberration -0.0046
the coma aberration 0.055 and astigmatic aberration 0.034.
Narcissus analysis for cooled staring IR system (EI CONFERENCE)
会议论文
OAI收割
3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, AOMATT 2007: Advanced Optical Manufacturing Technologies, July 8, 2007 - July 12, 2007, Chengdu, China
作者:
Zhang X.
;
Zhang X.
;
Zhang X.
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2013/03/25
Narcissus can have a deleterious effect on image quality for cooled infrared imaging systems. Therefore
analysis of narcissus is important for designing both scanning and staring optics. Narcissus is generally assumed to be negligible in staring IR optical designs because the shading effects can be removed by calibration of the detector array data. However
the calibration usually decreases sensitiveness of the system and Narcissus variation may be noticeable for sensors when the conditions changes as follows: 1. warming and cooling the optical housing
2. zooming optical elements
3. movement of lenses for focus. In that case
it will result in shading and other image defects even after calibration. To minimize these effects
narcissus should be assessed and controlled during the design of staring array IR system. We provided a direct and fast method for analyzing the narcissus variation in the presence of software such as LightTools
TracePro and ASAP
and proposed the principles in optical design of staring IR systems to reduce narcissus. A cooled staring IR system with serious narcissus was estimated and reoptimized. Narcissus analysis of this IR system confirmed the efficiency of the analysis method.