中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [2]
计算技术研究所 [2]
国家空间科学中心 [1]
遥感与数字地球研究所 [1]
自动化研究所 [1]
合肥物质科学研究院 [1]
更多
采集方式
OAI收割 [8]
内容类型
期刊论文 [7]
会议论文 [1]
发表日期
2021 [4]
2019 [1]
2018 [1]
2017 [1]
2008 [1]
学科主题
筛选
浏览/检索结果:
共8条,第1-8条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Gas Station Recognition Method Based on Monitoring Data of Heavy-Duty Vehicles
期刊论文
OAI收割
ENERGIES, 2021, 卷号: 14
作者:
Ding, Yan
;
Ji, Zhe
;
Liu, Peng
;
Wu, Zhiqiang
;
Li, Gang
  |  
收藏
  |  
浏览/下载:61/0
  |  
提交时间:2022/02/14
gas stations recognition
oil quality evaluation
heavy-duty vehicles
DBSCAN clustering
CART algorithm
real-world data
Clustering Indoor Positioning Data Using E-DBSCAN
期刊论文
OAI收割
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 卷号: 10, 期号: 10, 页码: 25
作者:
Cheng, Dayu
;
Yue, Guo
;
Pei, Tao
;
Wu, Mingbo
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2022/09/21
indoor positioning data
spatial-temporal mobility
weighted edit distance
E-DBSCAN
trajectory clustering
Clustering Indoor Positioning Data Using E-DBSCAN
期刊论文
OAI收割
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 卷号: 10, 期号: 10, 页码: 25
作者:
Cheng, Dayu
;
Yue, Guo
;
Pei, Tao
;
Wu, Mingbo
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2022/09/21
indoor positioning data
spatial-temporal mobility
weighted edit distance
E-DBSCAN
trajectory clustering
HTDet: A Clustering Method Using Information Entropy for Hardware Trojan Detection
期刊论文
OAI收割
TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 卷号: 26, 期号: 1, 页码: 48-61
作者:
Lu, Renjie
;
Shen, Haihua
;
Feng, Zhihua
;
Li, Huawei
;
Zhao, Wei
  |  
收藏
  |  
浏览/下载:56/0
  |  
提交时间:2021/12/01
Hardware Trojan (HT) detection
information entropy
Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
unsupervised learning
clustering
mutual information
test patterns generation
Grid-based DBSCAN: Indexing and inference
期刊论文
OAI收割
PATTERN RECOGNITION, 2019, 卷号: 90, 页码: 271-284
作者:
Zhuang, Fuzhen
;
He, Qing
;
Boonchoo, Thapana
;
Ao, Xiang
;
Liu, Yang
  |  
收藏
  |  
浏览/下载:77/0
  |  
提交时间:2019/08/16
Density-based clustering
Grid-based DBSCAN
Union-find algorithm
GRIDEN: An effective grid-based and density-based spatial clustering algorithm to support parallel computing
期刊论文
OAI收割
Pattern Recognition Letters, 2018, 卷号: 109, 页码: 81-88
作者:
Deng, Chao
;
Song, Jinwei
;
Sun, Ruizhi
;
Cai, Saihua
;
Shi, Yinxue
  |  
收藏
  |  
浏览/下载:159/0
  |  
提交时间:2018/02/28
Grid Based Clustering
Density Based Clustering
Dbscan
Griden
Data Mining
Massive Spatial Data
Parallel Computing
An Effective Density Based Approach to Detect Complex Data Clusters Using Notion of Neighborhood Difference
期刊论文
OAI收割
International Journal of Automation and Computing, 2017, 卷号: 14, 期号: 1, 页码: 57-67
作者:
S. Nagaraju
;
Manish Kashyap
;
Mahua Bhattachraya
  |  
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2021/02/23
Density based clustering
neighborhood difference
density-based spatial clustering of applications with noise (DBSCAN)
space density indexing (SDI)
core object.
A novel spatial clustering algorithm based on Delaunay triangulation
会议论文
OAI收割
International Conference on Earth Observation Data Processing and Analysis, ICEODPA,, Wuhan, China, December 28, 2008 - December 30,2008
Yang, Xiankun
;
Cui, Weihong
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2014/12/07
Exploratory data analysis is increasingly more necessary as larger spatial data is managed in electro-magnetic media. Spatial clustering is one of the very important spatial data mining techniques. So far
a lot of spatial clustering algorithms have been proposed. In this paper we propose a robust spatial clustering algorithm named SCABDT (Spatial Clustering Algorithm Based on Delaunay Triangulation). SCABDT demonstrates important advantages over the previous works. First
it discovers even arbitrary shape of cluster distribution. Second
in order to execute SCABDT
we do not need to know any priori nature of distribution. Third
like DBSCAN
Experiments show that SCABDT does not require so much CPU processing time. Finally it handles efficiently outliers. 2008 SPIE.