中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [1]
地质与地球物理研究所 [1]
长春光学精密机械与物... [1]
化学研究所 [1]
数学与系统科学研究院 [1]
遥感与数字地球研究所 [1]
更多
采集方式
OAI收割 [8]
内容类型
期刊论文 [5]
会议论文 [2]
SCI/SSCI论文 [1]
发表日期
2016 [2]
2013 [1]
2009 [1]
2008 [1]
2007 [1]
2006 [1]
更多
学科主题
天文技术与方法 [1]
筛选
浏览/检索结果:
共8条,第1-8条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Downhole microseismic signal recognition and extraction based on sparse distribution features
期刊论文
OAI收割
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2016, 卷号: 59, 期号: 10, 页码: 3869-3882
作者:
Li Wen
;
Liu Yi-Ke
;
Liu Bao-Jin
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2017/11/20
Microseismic monitoring
Hydraulic fracturing
Sparse distribution feature
Signal recognition and extraction
Wavelet transform
De-noise
Removing Random-Valued Impulse Noises by a Two-Staged Nonlinear Filtering Method
期刊论文
OAI收割
Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 卷号: 33, 期号: 3, 页码: 329-338
作者:
Ahmad Ashfaq
;
Lu Yanting
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2017/01/17
image de-noising
random-valued impulse noise
nonlinear filter
noisy pixel detection
two-stage detection and correction method
directional differences
A review on the applications of wavelet transform in hydrology time series analysis
SCI/SSCI论文
OAI收割
2013
Sang Y. F.
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2014/12/24
Hydrologic time series analysis
Wavelet transform
Periodicity
Trend
De-noising
Complexity
Hydrologic forecasting
multiscale entropy analysis
artificial neural-networks
information-theory
noise-reduction
rainfall fields
trend analysis
river flow
model
uncertainty
multiresolution
STATISTICAL INFERENCE FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS WITH ERROR-PRONE LINEAR COVARIATES
期刊论文
OAI收割
ANNALS OF STATISTICS, 2009, 卷号: 37, 期号: 1, 页码: 427-458
作者:
Zhou, Yong
;
Liang, Hua
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2018/07/30
Ancillary variables
de-noise linear model
errors-in-variable
profile least-square-based estimator
rational expection model
validation data
wild bootstrap
时变带限信道中光通信的均衡与去噪技术
期刊论文
OAI收割
光子学报, 2008, 卷号: 37, 期号: 6, 页码: 1195, 1199
梁波
;
朱海
;
陈卫标
收藏
  |  
浏览/下载:909/147
  |  
提交时间:2009/09/18
Convergence (mathematics)
De noising
Digital equalization
Equalization techniques
Numerical simulations
Optical (PET) (OPET)
Optical pulses
Optical signalling
Poisson noise
Semi-blind equalization
Soft-threshold
Wavelet de noising
A wavelet based targets detection method for high resolution airborne SAR data
会议论文
OAI收割
Igarss: 2007 Ieee International Geoscience and Remote Sensing Symposium, Vols 1-12: Sensing and Understanding Our Planet, New York
Tian, Sirui
;
Wang, Chao
;
Zhang, Hong
;
Zhang, Bo
;
Wu, Fan
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2014/12/07
targets detection
RC-CFAR detector
improved wavelet soft-threshold
de-noise
A new approach for the removal of mixed noise based on wavelet transform (EI CONFERENCE)
会议论文
OAI收割
ICO20: Remote Sensing and Infrared Devices and Systems, August 21, 2005 - August 26, 2005, Changchun, China
作者:
Li Y.
;
Li Y.
;
Li Y.
;
Li Y.
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2013/03/25
This paper proposed a new approach for the removal of mixed noise. There are many different ways in image denoising. Donoho et al have proposed a method for image de-noising by thresholding
ambiguity is often resulted in determining the correspondence of a modulus maximum to a singularity. In the light
and indeed
we combine the merits of the two techniques to form a new approach for the removal of mixed noise. At first
the application of their method to image denoising has been extremely successful. But the method of Donoho is based on the assumption that the type of noise is only additive Gaussian noise
we used wavelet singularity detection (WSD) technique to analyze singularities of signal and noise. According to the characteristic that wavelet transform modulus maxima of impulse noise rapidly decreases as the scale increases in wavelet domain
which is not successful for impulse noise. Mallat has also presented a method for signal denoising by discriminating the noise and the signal singularities through an analysis of their wavelet transform modulus maxima (WTMM). Nevertheless
it can be accurately located with multiscale space by going through dyadic orthogonal wavelet transform and removed. Furthermore the Gaussian noise is also removed through a level-dependent thresholding algorithm
the tracing of WTMM is not just tedious procedure computationally
algorithm. The experimental results demonstrate that the proposed method can effectively detect impulse noise and remove almost all of the noise while preserve image details very well.
Application of dyadic wavelet transform modulus maximum method to denoising of capillary electrophoresis signals
期刊论文
OAI收割
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2002, 卷号: 23, 期号: 5, 页码: 796-800
作者:
Zhong, HB
;
Li, GB
;
Liu, H
;
Zheng, JB
;
Chen, LR
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2019/04/09
Dyadic Wavelet Transform
Modulus Maximum
De-noise