中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共6条,第1-6条 帮助

条数/页: 排序方式:
A Distributed and Parallel Accelerator Design for 3-D Acoustic Imaging on FPGA-Based Systems 期刊论文  OAI收割
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 卷号: 43, 期号: 5, 页码: 1401-1414
作者:  
Zhao, Dongdong;  Mao, Weibo;  Chen, Peng;  Hu, Yingtian;  Liang, Haoran
  |  收藏  |  浏览/下载:34/0  |  提交时间:2024/06/17
An Accurate and Efficient Large-Scale Regression Method Through Best Friend Clustering 期刊论文  OAI收割
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 卷号: 33, 期号: 11, 页码: 3129-3140
作者:  
Li, Kun;  Yuan, Liang;  Zhang, Yunquan;  Chen, Gongwei
  |  收藏  |  浏览/下载:39/0  |  提交时间:2022/12/07
An efficient hybrid tridiagonal divide-and-conquer algorithm on distributed memory architectures 期刊论文  iSwitch采集
Journal of computational and applied mathematics, 2018, 卷号: 344, 页码: 512-520
作者:  
Li, Shengguo;  Rouet, Francois-Henry;  Liu, Jie;  Huang, Chun;  Gao, Xingyu
收藏  |  浏览/下载:93/0  |  提交时间:2019/05/09
Estimation of theoretical maximum speedup ratio for parallel computing of grid-based distributed hydrological models 期刊论文  OAI收割
COMPUTERS & GEOSCIENCES, 2013, 卷号: 60, 页码: 58-62
Liu, JunZhi(刘军志); Zhu, AX; Qin, CZ
收藏  |  浏览/下载:23/0  |  提交时间:2013/11/12
Estimation of theoretical maximum speedup ratio for parallel computing of grid-based distributed hydrological models SCI/SSCI论文  OAI收割
2013
Liu J. Z.; Zhu A. X.; Qin C. Z.
收藏  |  浏览/下载:33/0  |  提交时间:2014/12/24
A parallel algorithm for medical images registration based on B-splines (EI CONFERENCE) 会议论文  OAI收割
4th International Congress on Image and Signal Processing, CISP 2011, October 15, 2011 - October 17, 2011, Shanghai, China
作者:  
Zhang T.
收藏  |  浏览/下载:26/0  |  提交时间:2013/03/25
Cubic B-splines is widely applied in non-rigid registration because of its approximation performance and fast computational characteristics. However  a small scale non-rigid deformation is needed to characterize by a large number of control points. Moreover  an iterative optimization strategy of the non-rigid registration algorithm and the normalized mutual information (NMI) cost a great quantity calculation. So  the process of the non-rigid registration is slowed by calculations of NMI in a iterative optimization strategy. In this paper  a parallel optimization algorithm based on cubic B-splines functions is proposed to parallelize the optimization algorithm of the nonrigid registration and the calculations of normalize mutual information. In practice  a fast algorithm of cubic B-splines is used and the control points are only distributed on the targets. Experiments show that the use of the fast algorithm and the parallel optimization strategy improves the non-rigid registration process of medical images. 2011 IEEE.