中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [2]
长春光学精密机械与物... [2]
力学研究所 [1]
物理研究所 [1]
金属研究所 [1]
数学与系统科学研究院 [1]
更多
采集方式
OAI收割 [8]
iSwitch采集 [1]
内容类型
期刊论文 [6]
SCI/SSCI论文 [2]
会议论文 [1]
发表日期
2023 [1]
2021 [1]
2019 [2]
2015 [1]
2014 [1]
2013 [1]
更多
学科主题
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Prediction of multilayer Cr/GLC coatings degradation in deep-sea environments based on integrated mechanistic and machine learning models
期刊论文
OAI收割
CORROSION SCIENCE, 2023, 卷号: 224, 页码: 14
作者:
Ma, Hongyu
;
Qin, Pengfei
;
Cui, Yu
;
Liu, Rui
;
Ke, Peiling
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2024/01/08
Multilayer Cr/GLC coatings
EIS
Mechanistic empirical model
Machine learning models
Lifetime prediction
Post-fatigue properties of high-strength concrete subjected to coupled 3D fatigue-static loading
期刊论文
OAI收割
CONSTRUCTION AND BUILDING MATERIALS, 2021, 卷号: 306, 页码: 15
作者:
Yang, Fujian
;
Hu, Dawei
;
Zhou, Hui
;
Teng, Mao
;
Lan, Meili
  |  
收藏
  |  
浏览/下载:97/0
  |  
提交时间:2022/01/05
Post-fatigue characteristics
High-strength concrete
Coupled 3D fatigue-static loading
Physico-mechanical properties
Fatigue damage model
Empirical prediction model
Soil Moisture Retrieval Model for Remote Sensing Using Reflected Hyperspectral Information
期刊论文
OAI收割
Remote Sensing, 2019, 卷号: 11, 期号: 3, 页码: 17
作者:
J.Yuan
;
X.Wang
;
C.X.Yan
;
S.R.Wang
;
X.P.Ju
  |  
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2020/08/24
hyperspectral remote sensing,soil moisture retrieval model,reflectance,semi-empirical model,Water,spectroscopy,prediction,spectra,Remote Sensing
Semi-Empirical Soil Organic Matter Retrieval Model With Spectral Reflectance
期刊论文
OAI收割
Ieee Access, 2019, 卷号: 7, 页码: 134164-134172
作者:
J.Yuan
;
C.H.Hu
;
C.X.Yan
;
Z.Z.Li
;
S.B.Chen
  |  
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2020/08/24
Soil organic matter retrieval,reflectance,semi-empirical model,KM,machine learning-methods,moisture retrieval,calibration,prediction,carbon,interpolation,spectroscopy,texture,Computer Science,Engineering,Telecommunications
A hybrid ar-emd-svr model for the short-term prediction of nonlinear and non-stationary ship motion
期刊论文
iSwitch采集
Journal of zhejiang university-science a, 2015, 卷号: 16, 期号: 7, 页码: 562-576
作者:
Duan, Wen-yang
;
Huang, Li-min
;
Han, Yang
收藏
  |  
浏览/下载:50/0
  |  
提交时间:2019/05/09
Nonlinear and non-stationary ship motion
Short-term prediction
Empirical mode decomposition (emd)
Support vector regression (svr) model
Autoregressive (ar) model
Exploring spatiotemporal patterns and physical controls of soil moisture at various spatial scales
SCI/SSCI论文
OAI收割
2014
Qiu J. X.
;
Mo X. G.
;
Liu S. X.
;
Lin Z. H.
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2014/12/24
empirical orthogonal functions
eco-hydrological model
north china
plain
eof analysis
crop yield
land-use
evapotranspiration
variability
prediction
basin
Dynamic financial contagion prediction model based on fuzzy information granularity SVM
会议论文
OAI收割
Budapest, Hungary, November 19, 2013 - November 21, 2013
作者:
Liu L
;
Shao YF(邵颖峰)
;
Hui XF
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2018/11/08
Artificial intelligence
Finance
Information granules
Support vector machines
Arrival time
Empirical analysis
Financial contagions
Financial crisis
Fuzzy information
nonlinear similarity
Prediction model
Similarity indices
An empirical evaluation of spatial regression models
SCI/SSCI论文
OAI收割
2006
Gao X. L.
;
Asami Y.
;
Chung C. J. F.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2012/06/08
spatial regression model
model evaluation
cross-validation
prediction
empirical criteria
geographically weighted regression
expansion method
autocorrelation
nonstationarity
dependence
prices
Multi-step prediction for nonlinear autoregressive models based on empirical distributions
期刊论文
OAI收割
STATISTICA SINICA, 1999, 卷号: 9, 期号: 2, 页码: 559-570
作者:
Guo, MH
;
Bai, ZD
;
An, HZ
  |  
收藏
  |  
浏览/下载:11/0
  |  
提交时间:2018/07/30
empirical distribution
multi-step prediction
nonlinear autoregressive model