中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [1]
长春光学精密机械与物... [1]
遥感与数字地球研究所 [1]
采集方式
OAI收割 [3]
内容类型
SCI/SSCI论文 [1]
会议论文 [1]
期刊论文 [1]
发表日期
2016 [1]
2015 [1]
2010 [1]
学科主题
Remote Sen... [1]
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Improving spring maize yield estimation at field scale by assimilating time-series HJ-1 CCD data into the WOFOST model using a new method with fast algorithms
期刊论文
OAI收割
Remote Sensing, 2016, 卷号: 8, 期号: 4
作者:
Cheng, Zhiqiang
;
Meng, Jihua
;
Wang, Yiming
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2017/04/24
REMOTE-SENSING IMAGES
WAVELET DECOMPOSITION
SPARSE REPRESENTATION
INTENSITY MODULATION
PANCHROMATIC DATA
FUSION TECHNIQUES
SPATIAL DETAILS
QUALITY
ALGORITHMS
TRANSFORM
The effects of constraining variables on parameter optimization in carbon and water flux modeling over different forest ecosystems
SCI/SSCI论文
OAI收割
2015
作者:
Liu M.
;
He, H. L.
;
Ren, X. L.
;
Sun, X. M.
;
Yu, G. R.
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2015/12/09
Eddy covariance
Model data fusion
Parameter optimization
Forest
ecosystems
SIPNET
sensitivity-analysis techniques
net primary production
sub-alpine
forest
terrestrial ecosystems
nonlinear inversion
climate-change
mixed forest
data fusion
co2 fluxes
uncertainty
Restoration of an atmospherically blurred image based on physical model fusion approach (EI CONFERENCE)
会议论文
OAI收割
2010 IEEE 10th International Conference on Signal Processing, ICSP2010, October 24, 2010 - October 28, 2010, Beijing, China
作者:
Wang Y.
;
Li J.
;
Li J.
;
Li J.
;
Wang Y.
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2013/03/25
This paper proposes a new restoration method
only using the single image information
combining atmospheric physical model with fusion techniques to reduce the degradation of the image contrast in bad weather conditions caused by atmospheric aerosols
such as haze and fog. The basic idea of this method is to utilize physics-based model method instead of multisensors to generate a serial of virtual images
and then to fuse those virtual images into a high contrast image based on the wavelet fusion technique. In contrast to previous methods
our restoration technique is not only independent on predicted structure
distributions of scene reflectance
or detailed knowledge about the particular weather condition
but also adapt to the situation without a reference image or images with moving objects captured by a video camera. Experiments on different poorcontrast images demonstrate the availability of the proposed method in case of restoring the atmospherically blurred images. 2010 IEEE.