中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
计算技术研究所 [1]
长春光学精密机械与物... [1]
重庆绿色智能技术研究... [1]
沈阳自动化研究所 [1]
采集方式
OAI收割 [4]
内容类型
会议论文 [2]
期刊论文 [2]
发表日期
2016 [1]
2015 [1]
2011 [1]
2006 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Nonlinear fault detection threshold optimization method for RAIM algorithm using a heuristic approach
期刊论文
OAI收割
GPS SOLUTIONS, 2016, 卷号: 20, 期号: 4, 页码: 863-875
作者:
He, Pan
;
Liu, Gang
;
Tan, Chun
;
Lu, Yan-e
  |  
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2018/03/15
Integrity monitoring
Fault detection
Optimization model
Genetic algorithm
GPS system
RAIM algorithm
Detection of soft errors in LU decomposition with partial pivoting using algorithm-based fault tolerance
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2015, 卷号: 29, 期号: 4, 页码: 422-436
作者:
Yao, Erlin
;
Zhang, Jiutian
;
Chen, Mingyu
;
Tan, Guangming
;
Sun, Ninghui
  |  
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2019/12/13
Soft error
error detection
LU Decomposition with Partial Pivoting
Algorithm-Based Fault Tolerance
Nonlinear system fault detection based on TLLE
会议论文
OAI收割
Guangzhou, China, September 16-18, 2011
作者:
Zhang W(张伟)
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2012/06/06
Classical Methods
Euclidean Distance
Fault Detection Algorithm
Locally Linear Embedding
System Fault Detection
Tangent Space
Abrupt sensor fault diagnosis based on wavelet network (EI CONFERENCE)
会议论文
OAI收割
2006 IEEE International Conference on Information Acquisition, ICIA 2006, August 20, 2006 - August 23, 2006, Weihai, Shandong, China
作者:
Li W.
;
Li W.
;
Zhang H.
;
Zhang H.
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2013/03/25
The possible faults of a sensor may be classified as abrupt (sudden) faults and incipient (slowly developing) faults. This paper focuses on the abrupt faults of a sensor. Due to the limited number of scales
a single wavelet amplitude map has not enough scales to describe all details of the signal. The sampling grid in the scale direction is rather sparse
Some of the fault information will be leaked under such sparse grid. To make up for the deficiency of scalar orthogonal wavelet transform in the application of abrupt fault diagnosis
multiwavelet packets transform was introduced into the field of abrupt fault diagnosis. The distribution differences of the signal energy on decomposed multiwavelet scales of the signal before and after the fault occurring are extracted as the fault feature and used as the input of multi-dimensional wavelet network. A new model-free diagnostic method for isolating abrupt sensor faults is developed based on a proposed algorithm of multi-dimensional wavelet network constructing. The method has been proved to be quite effective in the detection of sensor abrupt fault. 2006 IEEE.