中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [4]
武汉岩土力学研究所 [3]
合肥物质科学研究院 [3]
成都山地灾害与环境研... [2]
地理科学与资源研究所 [1]
新疆生态与地理研究所 [1]
更多
采集方式
OAI收割 [14]
内容类型
期刊论文 [8]
会议论文 [6]
发表日期
2024 [2]
2023 [2]
2020 [2]
2019 [2]
2016 [1]
2011 [2]
更多
学科主题
筛选
浏览/检索结果:
共14条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Velocity field and outflow discharge behavior in overtopping dam-break of an iron mine tailings dam: a model test
期刊论文
OAI收割
BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2024, 卷号: 83, 期号: 6, 页码: 14
作者:
Ma, Changkun
;
Guo, Xiaogang
;
Yang, Chunhe
;
Zhang, Chao
;
Ma, Lei
  |  
收藏
  |  
浏览/下载:1/0
  |  
提交时间:2025/06/27
Tailings dam
Dam-break flow
Velocity-field
Outflow discharge
Non-intrusive measurement
Model test
Large-scale field tunnel model experience and time-dependent floor heave induced by humidification
期刊论文
OAI收割
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024, 卷号: 145, 页码: 18
作者:
Chang, Zhou
;
Yan, Changgen
;
Xie, Wanye
;
Lu, Zhifang
;
Lan, Hengxing
  |  
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2024/04/01
Loess tunnel
Field model test
Humidification
Floor heave
Time -dependency model
大气光学湍流模式研究:C_n~2廓线模式
期刊论文
OAI收割
物理学报, 2023, 卷号: 72
作者:
吴晓庆
;
杨期科
;
黄宏华
;
青春
;
胡晓丹
  |  
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2023/11/10
atmospheric optical turbulence
modified CLEAR I night model
C_n~2 profile model of 5 field test site
suspicion of the H-V(5/7)model
大气光学湍流
修正的CLEAR I夜晚模式
5个实验点C_n~2廓线公式
H-V(5/7)模式的存疑
填埋场单井注气气体压力监测试验及预测模型
期刊论文
OAI收割
岩土力学, 2023, 卷号: 44, 期号: 1, 页码: 259
作者:
金佳旭
;
朱磊
;
刘磊
;
陈亿军
;
姚远
  |  
收藏
  |  
浏览/下载:2/0
  |  
提交时间:2025/06/27
waste
landfill
single well aeration
gas pressure
field test
prediction model
垃圾土
填埋场
单井注气
气体压力
现场试验
预测模型
Optimal Design Method to Improve the Magnetic Field Distribution of Multiple Square Coil Systems
期刊论文
OAI收割
IEEE ACCESS, 2020, 卷号: 8
作者:
Huang, Ya
;
Jiang, Li
;
Fu, Peng
;
Huang, Zhengyi
;
Xu, Xuesong
  |  
收藏
  |  
浏览/下载:55/0
  |  
提交时间:2020/11/30
Magnetic fields
Optimization
Mathematical model
Taylor series
Conductors
Design methodology
Power electronics
Error analysis
immunity test
magnetic field uniformity
multiple square coil systems
Displacement characteristic of landslides reinforced with flexible piles: field and physical model test
期刊论文
OAI收割
JOURNAL OF MOUNTAIN SCIENCE, 2020, 卷号: 17, 期号: 4, 页码: 787-800
作者:
Zhou Chang
;
Hu Xin-li
;
Zheng Wen-bo
;
Xu Chu
;
Wang Qiang
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2020/11/12
Pile-soil interaction
Field trail
Physical model test
Soil arching
Displacement characteristics
Three Gorges Reservior
Studies of Deformation Properties of Collapsible Loess Foundation under Overburden Pressure with Large Thickness by Centrifugal Model Test
会议论文
OAI收割
Dalian, 2019-9-28~29
作者:
Jin,Songli
;
Xing,Yichuan
;
Yan,Jun
;
Zhao,Weiquan
;
Zhou,Shu
  |  
收藏
  |  
浏览/下载:87/0
  |  
提交时间:2020/03/10
loess
collapse under overburden pressure
centrifugal model test
field immersion test
Ecological Research on the Cracks Evolution Mechanism of Coal -Rock Mass in Deep Coal Mine
期刊论文
OAI收割
EKOLOJI, 2019, 卷号: 28, 期号: 107, 页码: 4537-4543
作者:
Liu, Bin
;
Li, Jinlan
;
Kang, Yongshui
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2020/04/08
coal-rock mass
gas drainage
crack
evolution mechanism
AE technique
model test
stopping method
fracture zone shape
stress field
crack features of fracture zone
AC Loss Analysis of Central Solenoid Model Coil for China Fusion Engineering Test Reactor
期刊论文
OAI收割
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 卷号: 26, 期号: 7, 页码: 5900505
作者:
Zhou, Wei
;
Fang, Jin
;
Liu, Bo
;
Fang, Xinyu
;
Liu, Yanchao
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2017/07/13
Ac Loss
Central Solenoid Model Coil (Csmc)
China Fusion Engineering Test Reactor (Cfetr)
Magnetic Field Distribution
Double inverted pendulum control based on three-loop PID and improved BP neural network (EI CONFERENCE)
会议论文
OAI收割
2011 2nd International Conference on Digital Manufacturing and Automation, ICDMA 2011, August 5, 2011 - August 7, 2011, Zhangjiajie, Hunan, China
作者:
Fan Y.
收藏
  |  
浏览/下载:43/0
  |  
提交时间:2013/03/25
To deal with the defects of BP neural networks used in balance control of inverted pendulum
such as longer train time and converging in partial minimum
this article reaLizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks(ANN)
builds up a training model of test simulation and the BP network is 6-10-1 structure. Tansig function is used in hidden layer and PureLin function is used in output layer
LM is used in training algorithm. The training data is acquried by three-loop PID algorithm. The model is learned and trained with Matlab calculating software
and the simuLink simulation experiment results prove that improved BP algorithm for inverted pendulum control has higher precision
better astringency and lower calculation. This algorithm has wide appLication on nonLinear control and robust control field in particular. 2011 IEEE.