中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
数学与系统科学研究... [12]
力学研究所 [2]
软件研究所 [2]
长春光学精密机械与物... [1]
武汉岩土力学研究所 [1]
采集方式
OAI收割 [18]
内容类型
期刊论文 [17]
会议论文 [1]
发表日期
2025 [1]
2023 [1]
2021 [2]
2019 [1]
2018 [1]
2017 [1]
更多
学科主题
筛选
浏览/检索结果:
共18条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A new high-order RKDG method based on the TENO-THINC scheme for shock-capturing
期刊论文
OAI收割
JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 卷号: 520, 页码: 20
作者:
Huang, Haohan
;
Li, Xinliang
;
Fu, Lin
;
Li XL(李新亮)
  |  
收藏
  |  
浏览/下载:3/0
  |  
提交时间:2024/11/14
PDEs
Runge-Kutta discontinuous Galerkin methods
TENO
WENO
Hyperbolic conservation laws
A Flux Reconstruction Stochastic Galerkin Scheme for Hyperbolic Conservation Laws
期刊论文
OAI收割
JOURNAL OF SCIENTIFIC COMPUTING, 2023, 卷号: 95, 期号: 1, 页码: 18
作者:
Xiao TB(肖天白)
;
Kusch, Jonas
;
Koellermeier, Julian
;
Frank, Martin
  |  
收藏
  |  
浏览/下载:63/0
  |  
提交时间:2023/04/20
Computational fluid dynamics
High order methods
Flux reconstruction
Uncertainty quantification
Stochastic Galerkin
Energy Stable Nodal Discontinuous Galerkin Methods for Nonlinear Maxwell's Equations in Multi-dimensions
期刊论文
OAI收割
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 卷号: 89, 期号: 2, 页码: 42
作者:
Lyu, Maohui
;
Bokil, Vrushali A.
;
Cheng, Yingda
;
Li, Fengyan
  |  
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2022/04/02
Maxwell's equations
Kerr and Raman nonlinear effects
Linear Lorentz
Nodal discontinuous Galerkin methods
Energy stable
High dimensions
Analysis of a Galerkin finite element method for the Maxwell-Schrodinger system under temporal gauge
期刊论文
OAI收割
IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 页码: 23
作者:
Ma, Chupeng
;
Zhang, Yongwei
;
Cao, Liqun
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2022/06/21
error estimates
Galerkin finite element methods
time stepping scheme
Maxwell-Schrodinger
Efficient Stochastic Galerkin Methods for Maxwell's Equations with Random Inputs
期刊论文
OAI收割
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 卷号: 80, 期号: 1, 页码: 248-267
作者:
Fang, Zhiwei
;
Li, Jichun
;
Tang, Tao
;
Zhou, Tao
  |  
收藏
  |  
浏览/下载:47/0
  |  
提交时间:2020/01/10
Maxwell's equations
Finite element method
Random inputs
Polynomial chaos methods
Stochastic Galerkin
High order well-balanced discontinuous Galerkin methods for Euler equations at isentropic equilibrium state under gravitational fields
期刊论文
OAI收割
APPLIED MATHEMATICS AND COMPUTATION, 2018, 卷号: 329, 页码: 23-37
作者:
Qian, Shouguo
;
Liu, Yu
;
Li, Gang
;
Yuan, Li
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2018/07/30
Euler equations
Isentropic equilibrium state
Discontinuous Galerkin methods
Well-balanced property
Gravitational fields
Exact imposition of essential boundary condition and material interface continuity in Galerkin-based meshless methods
期刊论文
OAI收割
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 卷号: 110, 期号: 7, 页码: 637-660
作者:
Li, Wei
;
Zheng, Hong
;
Du, Xiuli
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2018/06/05
meshless methods
Galerkin variational procedure
partition of unity
numerical manifold method
moving least squares interpolations
legendre spectral galerkin method for electromagnetic scattering from large cavities
期刊论文
OAI收割
SIAM Journal on Numerical Analysis, 2013, 卷号: 51, 期号: 1, 页码: 353-376
Li Huiyuan
;
Ma Heping
;
Sun Weiwei
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2013/09/17
Boundary conditions
Error analysis
Estimation
Galerkin methods
Helmholtz equation
On sinc discretization and banded preconditioning for linear third-order ordinary differential equations
期刊论文
OAI收割
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 卷号: 18, 期号: 3, 页码: 471-497
作者:
Bai, Zhong-Zhi
;
Chan, Raymond H.
;
Ren, Zhi-Ru
  |  
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2018/07/30
third-order ordinary differential equation
sinc-collocation discretization
sinc-Galerkin discretization
convergence analysis
banded preconditioning
Krylov subspace methods
Structure buckling load interval analysis of supercavitating projectile (EI CONFERENCE)
会议论文
OAI收割
2011 9th International Conference on Reliability, Maintainability and Safety: Safety First, Reliability Primary, ICRMS'2011, June 12, 2011 - June 15, 2011, Guiyang, China
作者:
Zhou L.
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2013/03/25
As a result of supercavitating projectiles with high underwater velocity
their structures undergo high longitudinal force. It is necessary to perform structure buckling load interval analysis because the uncertainty of structural own parameters should be considered. Critical buckling load of supercavitating projectiles is calculated by Galerkin method. The partial matrixes of critical buckling load implicit function to each uncertainty variable are deduced
and the interval of structure critical buckling load is calculated by interval analysis and convex model methods. Numerical results show that the nominal value
lower and upper bounds of critical buckling load increase with the increment of the ratio of base diameter to cavitator diameter. And the uncertainty degree of basic variables should be controlled as far as possible in the project for high reliability. 2011 IEEE.