中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [2]
自动化研究所 [2]
西安光学精密机械研究... [2]
计算技术研究所 [1]
数学与系统科学研究院 [1]
重庆绿色智能技术研究... [1]
更多
采集方式
OAI收割 [9]
内容类型
期刊论文 [5]
会议论文 [4]
发表日期
2023 [1]
2022 [1]
2020 [2]
2017 [1]
2015 [1]
2013 [1]
更多
学科主题
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Visual group target tracking algorithm based on MeanShift-PCA-PF
会议论文
OAI收割
Hybrid, Xi'an, China, 2023-04-21
作者:
Li, Jianing
;
Tian, Yan
;
Guo, Min
;
Zuo, Kaige
;
Wang, Xin
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2023/11/09
group targets
target tracking
clustering detection
particle filtering
An adaptive group LASSO approach for domain selection in functional generalized linear models
期刊论文
OAI收割
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 卷号: 219, 页码: 13-32
作者:
Sun, Yifan
;
Wang, Qihua
  |  
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2022/06/21
Functional data
Adaptive LASSO
Group LASSO
Null region detection
B-spline
Detection of Fake Reviews Using Group Model
期刊论文
OAI收割
MOBILE NETWORKS & APPLICATIONS, 2020, 页码: 13
作者:
Li, Yuejun
;
Wang, Fangxin
;
Zhang, Shuwu
;
Niu, Xiaofei
  |  
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2021/01/06
Fake review detection
Opinion spamming
Review group detection
Reviewer group
Reviewer collusion
A Slimmer Network with Polymorphic and Group Attention Modules for More Efficient Object Detection in Aerial Images
期刊论文
OAI收割
REMOTE SENSING, 2020, 卷号: 12, 期号: 22, 页码: 30
作者:
Guo, Wei
;
Li, Weihong
;
Li, Zhenghao
;
Gong, Weiguo
;
Cui, Jinkai
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2021/02/24
aerial images
object detection
channel pruning
polymorphic module (PM)
group attention module (GAM)
Patch-based topic model for group detection
期刊论文
OAI收割
SCIENCE CHINA-INFORMATION SCIENCES, 2017, 卷号: 60, 期号: 11
作者:
Chen, Mulin
;
Wang, Qi
;
Li, Xuelong
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2017/12/26
Group Detection
Collective Behavior
Crowd Analysis
Latent Topic
Fusing cross-media for topic detection by dense keyword groups
期刊论文
OAI收割
NEUROCOMPUTING, 2015, 卷号: 169, 页码: 169-179
作者:
Zhang, Weigang
;
Chen, Tianlong
;
Li, Guorong
;
Pang, Junbiao
;
Huang, Qingming
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2019/12/13
Topic detection
Cross-media
Dense keyword group
Near-duplicate keyframe
Web video
Learning Symmetry Features for Face Detection Based on Sparse Group Lasso
会议论文
OAI收割
Jinan, China, 2013年11月16-17日
作者:
Qi Li
;
Zhenan Sun
;
Ran He(赫然)
;
Tieniu Tan
;
Li, Qi
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2016/06/22
Face Detection
Sparse Group Lasso
Minimal Redundancy Maximal Relevance
The application of diagnostic equipment in the Tokamak fusion reaction (EI CONFERENCE)
会议论文
OAI收割
2011 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, November 6, 2011 - November 9, 2011, Beijing, China
Zhang B.-S.
;
Chang J.
;
Gong X.-Z.
;
Gan J.-F.
;
Feng S.-L.
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2013/03/25
This paper introduces the infrared optical system in the Tokamak fusion reaction device. In this optical system
3.the relay group lenses. This paper describes the decrease of the modulation transfer function (MTF) when the temperature changes and how to compensate the decrease of the MTF in order to maintain the image quality in a high level. As a result
the traditional optical structure can't meet the requirements
2.the Cassegrain system
the image quality of this optical system can reach the requirements when the temperature changes. 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
because the length of the infrared optical system in the Tokamak is very long. The design of optical system in the detection facility includes three parts:1.the combination of the concave aspheric mirror and flat mirror
A segment detection method based on improved Hough transform (EI CONFERENCE)
会议论文
OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
作者:
Yao Z.-J.
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2013/03/25
Hough transform is recognized as a powerful tool in shape analysis which gives good results even in the presence of noise and the disconnection of edge. However
3. applying the standard Hough transform equation to every point of the input image edge
4. according to the local threshold
6. merging the segments whose extreme points are near. Experiment results show the approach not only can recognize regular geometric object but also can extract the segment feature of real targets in complex environment. So the proposed method can be used in the target detection of complicated scenes
traditional Hough transform can only detect the lines
2. quantizing the parameter space
and extracting a group of maximums according to the global threshold
eliminating spurious peaks which are caused by the spreading effects
and will improve the precision of tracking.
cannot give the endpoints and length of the line segments and it is vulnerable to the quantization errors. Based on the analysis of its limitations
Hough transform has been improved in order to detect line segment feature of targets. The algorithm aims to avoid the loss of spatial information
as well as to eliminate the spurious peaks and fix on the line segments endpoints accurately
5. fixing on the endpoints of the segments according to the dynamic clustering rule
which can expediently be used for the description and classification of regular objects. The method consists of 6 steps: 1. setting up the image
parameter and line-segment spaces