中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [6]
宁波材料技术与工程研... [5]
物理研究所 [2]
烟台海岸带研究所 [1]
采集方式
OAI收割 [14]
内容类型
期刊论文 [9]
会议论文 [5]
发表日期
2021 [2]
2019 [3]
2018 [1]
2014 [1]
2012 [2]
2011 [1]
更多
学科主题
筛选
浏览/检索结果:
共14条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
提交时间升序
提交时间降序
作者升序
作者降序
题名升序
题名降序
发表日期升序
发表日期降序
Dramatically enhanced Seebeck coefficient in GeMnTe2-NaBiTe2 alloys by tuning the Spin's thermodynamic entropy
期刊论文
OAI收割
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 卷号: 23, 期号: 33, 页码: 17866-17872
作者:
Zhang, Yan
;
Xu, Liang
;
Liu, Guo-Qiang
;
Cai, Jianfeng
;
Yin, Yinong
  |  
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2021/12/01
HIGH THERMOELECTRIC PERFORMANCE
GETE
CONVERGENCE
POWER
SUPPRESSION
FIGURE
ORIGIN
BANDS
Anomalous Thermopower and High ZT in GeMnTe2 Driven by Spin's Thermodynamic Entropy
期刊论文
OAI收割
RESEARCH, 2021, 卷号: 2021
作者:
Duan, Sichen
;
Yin, Yinong
;
Liu, Guo-Qiang
;
Man, Na
;
Cai, Jianfeng
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2021/12/01
HIGH THERMOELECTRIC FIGURE
THERMAL-CONDUCTIVITY
MAGNON-DRAG
WASTE HEAT
POWER
GETE
EFFICIENCY
MERIT
SNTE
Hybrid Organic-Inorganic Thermoelectric Materials and Devices
期刊论文
OAI收割
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 卷号: 58, 期号: 43, 页码: 15206-15226
作者:
Jin, Huile
;
Li, Jun
;
Iocozzia, James
;
Zeng, Xin
;
Wei, Pai-Chun
  |  
收藏
  |  
浏览/下载:53/0
  |  
提交时间:2019/12/18
QUANTUM-WELL STRUCTURES
HIGH-PERFORMANCE
THERMAL-CONDUCTIVITY
GAS SENSOR
TRANSPORT-PROPERTIES
COMPOSITE FILMS
THIN-FILM
POLYMER
FIGURE
BI2TE3
Texture Development and Grain Alignment of Hot-Pressed Tetradymite Bi0.48Sb1.52Te3 via Powder Molding
期刊论文
OAI收割
ENERGY TECHNOLOGY, 2019, 卷号: 7, 期号: 11
作者:
Wang, Hongxiang
;
Xiong, Chenglong
;
Luo, Guoqiang
;
Hu, Haoyang
;
Yu, Bo
  |  
收藏
  |  
浏览/下载:58/0
  |  
提交时间:2019/12/18
HIGH-THERMOELECTRIC PERFORMANCE
THERMAL-CONDUCTIVITY
ENHANCEMENT
TRANSPORT
CA3CO4O9
FIGURE
MERIT
High-Resolution Angular Displacement Technology Based on Varying Moire Figure Phase Positions
期刊论文
OAI收割
Ieee Sensors Journal, 2019, 卷号: 19, 期号: 6, 页码: 2126-2132
作者:
H.Yu
;
X.D.Jia
;
Q.H.Wan
;
L.H.Liang
;
C.H.Zhao
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2020/08/24
Angular measurement,moire figure,phase difference,high resolution,optical encoder,sensor,Engineering,Instruments & Instrumentation,Physics
Thermoelectric properties of textured polycrystalline Na0.03Sn0.97Se enhanced by hot deformation
期刊论文
OAI收割
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 卷号: 6, 期号: 46, 页码: 23730-23735
作者:
Liang, Shaojun
;
Xu, Jingtao
;
Noudem, Jacques Guillaume
;
Wang, Hongxiang
;
Tan, Xiaojian
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2019/12/18
THERMAL-CONDUCTIVITY
HIGH ZTS
SNSE
PERFORMANCE
FIGURE
MERIT
POWER
OPTIMIZATION
TRANSPORT
CHARGE
Solvothermal synthesis of PbTe/SnTe hybrid nanocrystals
期刊论文
OAI收割
CHINESE CHEMICAL LETTERS, 2014, 卷号: 25, 期号: 6, 页码: 849-853
作者:
Jiang Wei
;
Yang ZhengLong
;
Weng Ding
;
Wang JunWei
;
Lu YunFeng
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2024/05/07
ENHANCED THERMOELECTRIC PERFORMANCE
NANOWIRE ARRAYS
PBTE NANOCRYSTALS
SILICON NANOWIRES
HIGH-DENSITY
THIN-FILM
MERIT
EFFICIENCY
FIGURE
NANORODS
Lead telluride
Tin telluride
Hybrid nanocrystal
Solvothermal synthesis
Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2
期刊论文
OAI收割
ACTA PHYSICA SINICA, 2012, 卷号: 61, 期号: 8
Zhang, H
;
Luo, J
;
Zhu, HT
;
Liu, QL
;
Liang, JK
;
Rao, GH
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/09/24
HIGH-TEMPERATURE
HIGH FIGURE
SYSTEM
MERIT
PERFORMANCE
DIAGRAM
GLASSES
Phase separation and thermoelectric properties of Ag2Te-doped PbTe0.9S0.1
期刊论文
OAI收割
ACTA MATERIALIA, 2012, 卷号: 60, 期号: 20, 页码: 7241
Zhang, H
;
Luo, J
;
Zhu, HT
;
Liang, JK
;
Ruan, LM
;
Liu, QL
;
Li, JB
;
Liu, GY
收藏
  |  
浏览/下载:48/0
  |  
提交时间:2013/09/24
LEAD-TELLURIDE
HIGH FIGURE
NANOSTRUCTURED THERMOELECTRICS
POWER-GENERATION
MERIT
PBTE
PERFORMANCE
SYSTEM
MICROSTRUCTURE
AGPBMSBTE2+M
The Research of real time auto-recognition of the moire fringe (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Imaging Detectors and Applications, May 24, 2011 - May 26, 2011, Beijing, China
Wang M.-J.
;
Wu Z.-G.
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2013/03/25
Measuring the movement of raster by the method of moire fringe has the advantage of high sensitivity
high resolution and non-contacted measurement. The characteristic of moire fringe is that the image is white alternate with black
the angle of the stripes is uniform
the width of the stripes is uniform
the terminators of the stripes aren't clear. A fast method that can figure out the width and angle of the moire fringe precisely is put forward in this paper. It calculates the angle the stripes firstly. According to the principle of the minimum mean squared error (MMSE)
the closer a series of data is
the smaller the value of the MMSE will be. The method is described as follows: It takes the image's center as the origin
180 beelines pass through the origin with the same angle interval. it calculates the value of the minimum mean squared error of the 180 beelines and find out the least one among those
then the angle of the moire fringe comes out primarily. In order to improving the calculating precision of moire fringe
60 equal angles are divided in the neighborhood of the angle
then a precise angle of moire fringe is calculated according to the principle of the MMSE. After getting out the angle of the moire fringe
we begin to calculate the width of moire fringe. A line vertical with the moire fringe is drawn
and we can get the width of the moire fringe by the vertical line. In order to get over the influence of the noise
an effective area with the shape of diamond is selected in the image. The data of area is accumulated and projected according to the direction of moire fringe
and a sine curve come out. The width of moire fringe can be obtained by getting the position of the first wave crest
the position of the last wave crest and the number of wave crest. Experiments prove that the precision of the method put forward in this paper is enhanced in comparison with the traditional frequency method
the precision of width calculation achieves to 99.6% according to the evaluation indicators of width detection error. The computing speed is boosted largely compared with traditional method
and it can achieve with 15 ms
that satisfying the demand of real time. 2011 SPIE.