中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
_filter
_filter
_filter
筛选

浏览/检索结果: 共4条,第1-4条 帮助

条数/页: 排序方式:
Insight-HXMT observations of Swift J0243.6+6124: the evolution of RMS pulse fractions at super-Eddington luminosity 期刊论文  OAI收割
Monthly Notices of the Royal Astronomical Society, 2020, 卷号: 497, 页码: 5498-5506
作者:  
HXMT
  |  收藏  |  浏览/下载:46/0  |  提交时间:2022/02/08
stars: neutron  pulsars: individual: Swift J0243.6+6124  X-rays:  binaries  Astrophysics - High Energy Astrophysical Phenomena  Abstract: Based on Insight-HXMT data, we report on the pulse fraction evolution during the 2017-2018 outburst of the newly discovered first Galactic ultraluminous X-ray (ULX) source Swift J0243.6+6124. The pulse fractions of 19 observation pairs selected in the rising and fading phases with similar luminosity are investigated. The results show a general trend of the pulse fraction increasing with luminosity and energy at supercritical luminosity. However, the relative strength of the pulsation between each pair evolves strongly with luminosity. The pulse fraction in the rising phase is larger at luminosity below 7.71 × 1038 erg s-1, but smaller at above. A transition luminosity is found to be energy independent. Such a phenomenon is first confirmed by Insight-HXMT observations and we speculate that it may have relation with the radiation-pressure-dominated accretion disc.  
Simulation studies of the granular flow beryllium target for the compact materials irradiation facility 期刊论文  OAI收割
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 卷号: 942, 页码: 6
作者:  
Tao, Ke-Wei;  Zhang, A-Ling;  Cai, An-Jie;  Yang, Guanghui;  Zhang, Sheng
  |  收藏  |  浏览/下载:135/0  |  提交时间:2019/11/10
Timing analysis of Swift J1658.2-4242's outburst in 2018 with Insight-HXMT, NICER and AstroSat 期刊论文  OAI收割
Journal of High Energy Astrophysics, 2019, 卷号: 24, 页码: 30-40
作者:  
HXMT
  |  收藏  |  浏览/下载:59/0  |  提交时间:2022/02/08
Accretion  accretion disks  Black hole physics  X-rays: binaries:  Swift J1658.2-4242  Astrophysics - High Energy Astrophysical Phenomena  Abstract: We present the observational results from a detailed timing analysis of the black hole candidate Swift J1658.2-4242 during its 2018 outburst with the observations of Hard X-ray Modulation Telescope (Insight-HXMT), Neutron Star Interior Composition Explorer (NICER) and AstroSat in 0.1-250 keV. The evolution of intensity, hardness and integrated fractional root mean square (rms) observed by Insight-HXMT and NICER are presented in this paper. Type-C quasi-periodic oscillations (QPOs) observed by NICER (0.8-3.5 Hz) and Insight-HXMT (1-1.6 Hz) are also reported in this work. The features of the QPOs are analyzed with an energy range of 0.5-50 keV. The relations between QPO frequency and other characteristics such as intensity, hardness and QPO rms are carefully studied. The timing and spectral properties indicate that Swift J1658.2-4242 is a black hole binary system. Besides, the rms spectra of the source calculated from the simultaneous observation of Insight-HXMT, NICER and AstroSat support the Lense-Thirring origin of the QPOs. The relation between QPO phase lag and the centroid frequency of Swift J1658.2-4242 reveals a near zero constant when < 4Hz and a soft phase lag at 6.68 Hz. This independence follows the same trend as the high inclination galactic black hole binaries such as MAXI J1659-152.  
KHARKOV COMPACT CYCLOTRON CV-28: PRESENT 研究报告  OAI收割
2010
Yuri Petrusenko; Dmytro Barankov; Sergii Shkyryda1; Denys Irzhevskyi; Rainer Hoelzle
  |  收藏  |  浏览/下载:19/0  |  提交时间:2011/07/11