中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [3]
计算技术研究所 [2]
长春光学精密机械与物... [1]
沈阳自动化研究所 [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [8]
内容类型
期刊论文 [6]
会议论文 [1]
学位论文 [1]
发表日期
2023 [1]
2021 [1]
2018 [1]
2017 [1]
2015 [1]
2011 [2]
更多
学科主题
筛选
浏览/检索结果:
共8条,第1-8条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
PyMAF-X: Towards Well-Aligned Full-Body Model Regression From Monocular Images
期刊论文
OAI收割
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 卷号: 45, 期号: 10, 页码: 12287-12303
作者:
Zhang, Hongwen
;
Tian, Yating
;
Zhang, Yuxiang
;
Li, Mengcheng
;
An, Liang
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2023/11/16
Expressive human mesh recovery
full-body motion capture
mesh alignment feedback
monocular 3D reconstruction
Human motion tracking with less constraint of initial posture from a single rgb-d sensor
期刊论文
OAI收割
Sensors, 2021, 卷号: 21, 期号: 9, 页码: 1-16
作者:
Liu, Chen
;
Wang AN(王安娜)
;
Bu CG(卜春光)
;
Wang, Wenhui
;
Sun, Haijing
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2021/05/10
4D reconstruction
human motion capture
RGB-D sensor
Data-driven human model estimation for realtime motion capture
期刊论文
OAI收割
JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2018, 卷号: 48, 页码: 10-18
作者:
Zhai, Wenpeng
;
Su, Le
;
Xia, Shihong
;
Liao, Lianjun
  |  
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2019/04/03
Human model estimation
Data driven
Human motion capture
Depth image
A Survey on Human Performance Capture and Animation
期刊论文
OAI收割
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2017, 卷号: 32, 期号: 3, 页码: 536-554
作者:
Xia, Shihong
;
Gao, Lin
;
Lai, Yu-Kun
;
Yuan, Ming-Ze
;
Chai, Jinxiang
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2019/12/12
human surface reconstruction
body motion capture
motion synthesis
physics-based motion simulation
Mining Spatial-Temporal Patterns and Structural Sparsity for Human Motion Data Denoising
期刊论文
OAI收割
ieee transactions on cybernetics, 2015, 卷号: 45, 期号: 12, 页码: 2693-2706
作者:
Feng, Yinfu
;
Ji, Mingming
;
Xiao, Jun
;
Yang, Xiaosong
;
Zhang, Jian J.
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2015/12/25
Human motion denoising
l(2
Microsoft Kinect
motion capture data
robust dictionary learning
robust structured sparse coding
p)-norm
三维人体骨架模型的运动编辑与合成
学位论文
OAI收割
工学硕士, 中国科学院自动化研究所: 中国科学院研究生院, 2011
郭晓乐
收藏
  |  
浏览/下载:74/0
  |  
提交时间:2015/09/02
运动编辑
运动合成
人体骨架模型
运动捕获数据
motion editing
motion synthesis
human skeleton model
motion capture data
The new approach for infrared target tracking based on the particle filter algorithm (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications, May 24, 2011 - May 24, 2011, Beijing, China
作者:
Sun H.
;
Han H.-X.
;
Sun H.
收藏
  |  
浏览/下载:57/0
  |  
提交时间:2013/03/25
Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring
precision
and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection
the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure
but in order to capture the change of the state space
it need a certain amount of particles to ensure samples is enough
and this number will increase in accompany with dimension and increase exponentially
this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining"
we expand the classic Mean Shift tracking framework.Based on the previous perspective
we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis
Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism
used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation
and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value.Last because of the gray and fusion target motion information
this approach also inhibit interference from the background
ultimately improve the stability and the real-time of the target track. 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
An Efficient Skeleton-Free Pose Retargetting Method for Triangular Meshes
期刊论文
OAI收割
CHINESE JOURNAL OF ELECTRONICS, 2008, 卷号: 17, 期号: 4, 页码: 659-664
作者:
Wu Huaiyu
;
Pan Chunhong
;
Zeng Kun
;
Yang Qing
;
Ma Songde
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2015/11/08
Pose retargetting
Human motion animation
Skeleton-free mesh deformation
Motion capture data