中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [1]
自动化研究所 [1]
生态环境研究中心 [1]
采集方式
OAI收割 [3]
内容类型
期刊论文 [2]
会议论文 [1]
发表日期
2021 [1]
2020 [1]
2007 [1]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A Dragonfly Optimization Algorithm for Extracting Maximum Power of Grid-Interfaced PV Systems
期刊论文
OAI收割
SUSTAINABILITY, 2021, 卷号: 13, 期号: 19, 页码: 27
作者:
Lodhi, Ehtisham
;
Wang, Fei-Yue
;
Xiong, Gang
;
Mallah, Ghulam Ali
;
Javed, Muhammad Yaqoob
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2022/01/27
photovoltaic (PV)
partial shading
maximum power point tracking (MPPT)
dragonfly optimization algorithm (DOA)
adaptive cuckoo search optimization (ACSO)
fruit fly optimization algorithm combined with general regression neural network (FFO-GRNN)
improved particle swarm optimization (IPSO)
voltage source inverter (VSI)
total harmonic distortion (THD)
Monthly Streamflow Forecasting Using ELM-IPSO Based on Phase Space Reconstruction
期刊论文
OAI收割
WATER RESOURCES MANAGEMENT, 2020, 卷号: 34, 期号: 11, 页码: 3515-3531
作者:
Jiang, Yan
;
Bao, Xin
;
Hao, Shaonan
;
Zhao, Hongtao
;
Li, Xuyong
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2021/08/31
Streamflow prediction
Chaohe River basin
Chaotic dynamic characteristics
Phase space reconstruction
Extreme learning machine
Improved particle swarm optimization algorithm
An improved discrete particle swarm optimization algorithm for TSP (EI CONFERENCE)
会议论文
OAI收割
2007 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT Workshops 2007, November 2, 2007 - November 5, 2007, Silicon Valley, CA, United states
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2013/03/25
An Improved discrete particle swarm optimization (DPSO)-based algorithm for the traveling salesman problem (TSP) is proposed. In order to overcome the problem of premature convergence
a novel depressor is proposed and a diversity measure to control the swarm is also introduced which can be used to switch between the attractor and depressor. The proposed algorithm has been applied to a set of benchmark problems and compared with the existing algorithms for solving TSP using swarm intelligence. The results show that it can prevent premature convergence to a high degree
but still keeps a rapid convergence like the basic DPSO. 2007 IEEE.