中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
计算技术研究所 [2]
长春光学精密机械与物... [1]
采集方式
OAI收割 [3]
内容类型
期刊论文 [2]
会议论文 [1]
发表日期
2022 [2]
2012 [1]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Enabling In-Network Floating-Point Arithmetic for Efficient Computation Offloading
期刊论文
OAI收割
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 卷号: 33, 期号: 12, 页码: 4918-4934
作者:
Cui, Penglai
;
Pan, Heng
;
Li, Zhenyu
;
Zhang, Penghao
;
Miao, Tianhao
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2023/07/12
Open area test sites
Arithmetic
Memory management
Task analysis
Training
Standards
Servers
In-network computation
computation offloading
floating-point operation
NetSHa: In-Network Acceleration of LSH-Based Distributed Search
期刊论文
OAI收割
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 卷号: 33, 期号: 9, 页码: 2213-2229
作者:
Zhang, Penghao
;
Pan, Heng
;
Li, Zhenyu
;
Cui, Penglai
;
Jia, Ru
  |  
收藏
  |  
浏览/下载:48/0
  |  
提交时间:2022/12/07
Servers
Indexes
Costs
Task analysis
Hash functions
Concurrent computing
Aggregates
Local sensitive hashing
distributed search
in-network computation
Moving target detection and classification using spiking neural networks (EI CONFERENCE)
会议论文
OAI收割
2nd Sino-Foreign-Interchange Workshop on Intelligent Science and Intelligent Data Engineering, IScIDE 2011, October 23, 2011 - October 25, 2011, Xi'an, China
作者:
Sun H.
;
Wang Z.
;
Wang Z.
;
Wang P.
;
Sun H.
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2013/03/25
We proposed a spiking neural network (SNN) to detect moving target in video streams and classify them into real categorization in this paper. The proposed SNN uses spike trains to encoding information such as the gray value of pixels or feature parameters of the target
detects moving target by simulating the visual cortex for motion detection in biological system with axonal delays and classify them into different categorizations according to their distance to categorization's centers found by Hebb learning rule. The experimental results show that the proposed SNN is promising in intelligence computation and applicable in general visual surveillance system. 2012 Springer-Verlag.