中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
计算技术研究所 [3]
长春光学精密机械与物... [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [3]
会议论文 [1]
发表日期
2024 [1]
2023 [1]
2020 [1]
2011 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Convolution-Enhanced Bi-Branch Adaptive Transformer With Cross-Task Interaction for Food Category and Ingredient Recognition
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 卷号: 33, 页码: 2572-2586
作者:
Liu, Yuxin
;
Min, Weiqing
;
Jiang, Shuqiang
;
Rui, Yong
  |  
收藏
  |  
浏览/下载:11/0
  |  
提交时间:2024/05/20
Semantics
Visualization
Transformers
Task analysis
Feature extraction
Image recognition
Fish
Food recognition
ingredient recognition
food computing
fine-grained recognition
multi-label recognition
Multi-state Ingredient Recognition via Adaptive Multi-centric Network
期刊论文
OAI收割
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 页码: 10
作者:
Wen, Min
;
Song, Jiajun
;
Min, Weiqing
;
Xiao, Weimin
;
Han, Lin
  |  
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2024/05/20
Ingredient recognition
intelligent cooking device
Multi-Scale Multi-View Deep Feature Aggregation for Food Recognition
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 卷号: 29, 页码: 265-276
作者:
Jiang, Shuqiang
;
Min, Weiqing
;
Liu, Linhu
;
Luo, Zhengdong
  |  
收藏
  |  
浏览/下载:155/0
  |  
提交时间:2019/12/10
Food recognition
ingredient knowledge
feature aggregation
convolutional neural networks
Design for target classifier based on semi-supervised learning (EI CONFERENCE)
会议论文
OAI收割
2011 International Conference on Electric Information and Control Engineering, ICEICE 2011, April 15, 2011 - April 17, 2011, Wuhan, China
Jiangrui K.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
The target classifier is an ingredient of the target recognition system. In order to achieve the automation and computerization of target recognition
a method for training target classifier based on semi-supervised learning is provided. It adopts CFS algorithm for dada feature selection
and uses semi-supervised learning algorithm
Co-training to construct the target classifiers. The final classifier was produced through integration learning method. Experimental results show that the performance of the target classifier based on semi-supervised learning trained is superior to the traditional target classifier. 2011 IEEE.