中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [2]
长春光学精密机械与物... [1]
中国科学院大学 [1]
采集方式
OAI收割 [3]
iSwitch采集 [1]
内容类型
会议论文 [2]
期刊论文 [2]
发表日期
2015 [1]
2013 [2]
2012 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
On Equivalence of l1 Norm Based Basic Sparse Representation Problems
会议论文
OAI收割
IEEE Conference of Signal Processing, Communications and Computing (ICSPCC), 2015, Ningbo, Zhejiang, China, September 19-22, 2015
作者:
Jiang, Rui
;
Qiao, Hong
;
Zhang, Bo
;
Jiang R(姜锐)
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2016/10/27
Equivalence
l1 norm regularization problem
l1 norm minimization problem
l1 norm constraint problem
Minimization of eigenvalues for some differential equations with integrable potentials
期刊论文
iSwitch采集
Boundary value problems, 2013, 卷号: 2013, 期号: 1
作者:
Meng,Gang
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2019/05/09
Eigenvalue
Sturm-liouville equations
Minimization problem
Integrable potential
L1 ball
A fast convex conjugated algorithm for sparse recovery
期刊论文
OAI收割
NEUROCOMPUTING, 2013, 卷号: 115, 页码: 178-185
作者:
He, Ran
;
Yuan, Xiaotong
;
Zheng, Wei-Shi
;
Ran He(赫然)
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2015/08/12
Sparse representation
Half-quadratic minimization
L1 minimization
Image coding using wavelet-based compressive sampling (EI CONFERENCE)
会议论文
OAI收割
2012 5th International Symposium on Computational Intelligence and Design, ISCID 2012, October 28, 2012 - October 29, 2012, Hangzhou, China
作者:
Li J.
;
Li J.
;
Li J.
收藏
  |  
浏览/下载:49/0
  |  
提交时间:2013/03/25
In this paper
we proposed a novel coding scheme is proposed using wavelet-based CS framework for nature image. First
two-dimension discrete wavelet transform (DWT) is applied to a nature image for sparse representation. After multi-scale DWT
the low-frequency sub-band and high-frequency sub-bands are re-sampled separately. According to the statistical dependences among DWT coefficients
we allocate different measurements to low- and high-frequency component. Then
the measurements samples can be quantized. The quantize samples are entropy coded and forward correct coding (FEC). Finally
the compressed streams are transmitted. At the decoder
one can simply reconstruct the image via l1 minimization. Experimental results show that the proposed wavelet-based CS scheme achieves better compression performance against the relevant existing solutions.