中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究... [10]
合肥物质科学研究院 [1]
采集方式
OAI收割 [11]
内容类型
期刊论文 [11]
发表日期
2022 [3]
2020 [2]
2018 [6]
学科主题
筛选
浏览/检索结果:
共11条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Lidar-based daytime boundary layer height variation and impact on the regional satellite-based PM2.5 estimate
期刊论文
OAI收割
REMOTE SENSING OF ENVIRONMENT, 2022, 卷号: 281
作者:
Chen, Sijie
;
Tong, Bowen
;
Russell, Lynn M.
;
Wei, Jing
;
Guo, Jianping
  |  
收藏
  |  
浏览/下载:60/0
  |  
提交时间:2022/12/22
MAIAC AOD
Haze layer height
Deep learning
MPL
PM2
5
Deterioration of air quality associated with the 2020 US wildfires
期刊论文
OAI收割
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 卷号: 826, 页码: 11
作者:
Filonchyk, Mikalai
;
Peterson, Michael P. P.
;
Sun, Dongqi
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2022/09/21
Wildfires
United States
PM2.5
Aerosol optical depth
Ultraviolet aerosol index
MAIAC
TROPOMI
Deterioration of air quality associated with the 2020 US wildfires
期刊论文
OAI收割
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 卷号: 826, 页码: 11
作者:
Filonchyk, Mikalai
;
Peterson, Michael P. P.
;
Sun, Dongqi
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2022/09/21
Wildfires
United States
PM2.5
Aerosol optical depth
Ultraviolet aerosol index
MAIAC
TROPOMI
Spatiotemporal imputation of MAIAC AOD using deep learning with downscaling
期刊论文
OAI收割
REMOTE SENSING OF ENVIRONMENT, 2020, 卷号: 237, 页码: 17
作者:
Li, Lianfa
;
Franklin, Meredith
;
Girguis, Mariam
;
Lurmann, Frederick
;
Wu, Jun
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2020/05/19
Aerosol Optical Depth
MAIAC
MERRA-2 GMI Replay Simulation
Deep learning
Downscaling
Missingness imputation
Air quality
Spatiotemporal imputation of MAIAC AOD using deep learning with downscaling
期刊论文
OAI收割
REMOTE SENSING OF ENVIRONMENT, 2020, 卷号: 237, 页码: 17
作者:
Li, Lianfa
;
Franklin, Meredith
;
Girguis, Mariam
;
Lurmann, Frederick
;
Wu, Jun
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2020/05/19
Aerosol Optical Depth
MAIAC
MERRA-2 GMI Replay Simulation
Deep learning
Downscaling
Missingness imputation
Air quality
Using MAIAC AOD to verify the PM2.5 spatial patterns of a land use regression model
期刊论文
OAI收割
ENVIRONMENTAL POLLUTION, 2018, 卷号: 243, 页码: 501-509
作者:
Li, Runkui
;
Ma, Tianxiao
;
Xu, Qun
;
Song, Xianfeng
  |  
收藏
  |  
浏览/下载:47/0
  |  
提交时间:2019/05/23
Spatial pattern
Fine particulate matter
Land use regression model
MAIAC AOD
Beijing
Using MAIAC AOD to verify the PM2.5 spatial patterns of a land use regression model
期刊论文
OAI收割
ENVIRONMENTAL POLLUTION, 2018, 卷号: 243, 页码: 501-509
作者:
Li, Runkui
;
Ma, Tianxiao
;
Xu, Qun
;
Song, Xianfeng
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2019/05/23
Spatial pattern
Fine particulate matter
Land use regression model
MAIAC AOD
Beijing
Using MAIAC AOD to verify the PM2.5 spatial patterns of a land use regression model
期刊论文
OAI收割
ENVIRONMENTAL POLLUTION, 2018, 卷号: 243, 页码: 501-509
作者:
Li, Runkui
;
Ma, Tianxiao
;
Xu, Qun
;
Song, Xianfeng
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2019/05/23
Spatial pattern
Fine particulate matter
Land use regression model
MAIAC AOD
Beijing
Estimation of PM2.5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth
期刊论文
OAI收割
REMOTE SENSING OF ENVIRONMENT, 2018, 卷号: 217, 页码: 573-586
作者:
Li, Lianfa
;
Zhang, Jiehao
;
Meng, Xia
;
Fang, Ying
;
Ge, Yong
  |  
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2019/05/23
PM2.5
MAIAC AOD
High spatiotemporal resolution
Temporal variation
AOD-PM2.5 associations
Spatial effects
Missingness
Machine learning
Estimation of PM2.5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth
期刊论文
OAI收割
REMOTE SENSING OF ENVIRONMENT, 2018, 卷号: 217, 页码: 573-586
作者:
Li, Lianfa
;
Zhang, Jiehao
;
Meng, Xia
;
Fang, Ying
;
Ge, Yong
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2019/05/23
PM2.5
MAIAC AOD
High spatiotemporal resolution
Temporal variation
AOD-PM2.5 associations
Spatial effects
Missingness
Machine learning