中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [9]
计算技术研究所 [1]
长春光学精密机械与物... [1]
遥感与数字地球研究所 [1]
沈阳自动化研究所 [1]
采集方式
OAI收割 [13]
内容类型
期刊论文 [7]
学位论文 [4]
会议论文 [2]
发表日期
2024 [1]
2023 [2]
2022 [2]
2021 [2]
2014 [1]
2012 [2]
更多
学科主题
筛选
浏览/检索结果:
共13条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Embedded prompt tuning: Towards enhanced calibration of pretrained models for medical images
期刊论文
OAI收割
MEDICAL IMAGE ANALYSIS, 2024, 卷号: 97, 页码: 13
作者:
Zu, Wenqiang
;
Xie, Shenghao
;
Zhao, Qing
;
Li, Guoqi
;
Ma, Lei
  |  
收藏
  |  
浏览/下载:8/0
  |  
提交时间:2024/09/09
Foundation model
Parameter-efficient fine-tuning
Visual prompt tuning
Few-shot medical image analysis
A multi-view co-training network for semi-supervised medical image-based prognostic prediction
期刊论文
OAI收割
NEURAL NETWORKS, 2023, 卷号: 164, 页码: 455-463
作者:
Li, Hailin
;
Wang, Siwen
;
Liu, Bo
;
Fang, Mengjie
;
Cao, Runnan
  |  
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2023/11/17
Deep neural network
Medical image analysis
Prognostic prediction
Semi-supervised learning
A Review of Predictive and Contrastive Self-supervised Learning for Medical Images
期刊论文
OAI收割
Machine Intelligence Research, 2023, 卷号: 20, 期号: 4, 页码: 483-513
作者:
Wei-Chien Wang
;
Euijoon Ahn
;
Dagan Feng
;
Jinman Kim
  |  
收藏
  |  
浏览/下载:1/0
  |  
提交时间:2024/04/23
Self-supervised learning (SSL), contrastive learning, deep learning, medical image analysis, computer vision
A shape-guided deep residual network for automated CT lung segmentation
期刊论文
OAI收割
KNOWLEDGE-BASED SYSTEMS, 2022, 卷号: 250, 页码: 10
作者:
Yang, Lei
;
Gu, Yuge
;
Huo, Benyan
;
Liu, Yanhong
;
Bian, Guibin
  |  
收藏
  |  
浏览/下载:43/0
  |  
提交时间:2022/09/19
Deep network architecture
Medical image analysis
Shape stream network
Residual unit
Attention fusion unit
CellNet: A Lightweight Model towards Accurate LOC-Based High-Speed Cell Detection
期刊论文
OAI收割
ELECTRONICS, 2022, 卷号: 11, 期号: 9, 页码: 20
作者:
Long, Xianlei
;
Ishii, Idaku
;
Gu, Qingyi
  |  
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2022/07/25
cell detection
high-speed vision
convolutional neural network (CNN)
efficient convolutional block
medical image analysis
A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises
期刊论文
OAI收割
PROCEEDINGS OF THE IEEE, 2021, 卷号: 109, 期号: 5, 页码: 820-838
作者:
Zhou, S. Kevin
;
Greenspan, Hayit
;
Davatzikos, Christos
;
Duncan, James S.
;
Van Ginneken, Bram
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2021/12/01
Imaging
Medical diagnostic imaging
Image segmentation
Diseases
Task analysis
Medical services
Computed tomography
Deep learning (DL)
medical imaging
survey
DUDA-Net: a double U-shaped dilated attention network for automatic infection area segmentation in COVID-19 lung CT images
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 卷号: 16, 期号: 9, 页码: 1425-1434
作者:
Xie, Feng
;
Huang Z(黄钲)
;
Shi, Zhengjin
;
Wang TY(王天宇)
;
Song GL(宋国立)
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2021/06/18
Medical image analysis
Deep learning
Lesion segmentation
U-Net
Attention mechanism
基于数字几何的脑结构形状分析研究及应用
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院大学, 2014
作者:
陈雪姣
收藏
  |  
浏览/下载:46/0
  |  
提交时间:2015/09/02
医学图像
数字几何
脑结构
形状分析
Ricci流
Medical Image
Digital Geometry
Brain Structure
Shape Analysis
Ricci Flow
基于局部特征的医学影像形态分析理论与方法
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2012
作者:
王虎
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2015/09/02
医学影像
形态分析
个体分类
局部特征
特征提取
Medical image
morphometric analysis
individual classification
local feature
feature extraction
The research of digltal CR medicine image adapitive enhancement method (EI CONFERENCE)
会议论文
OAI收割
4th International Conference on Mechanical and Electrical Technology, ICMET 2012, July 24, 2012 - July 26, 2012, Kuala Lumpur, Malaysia
Ming-Hui Z.
;
Yao-Yu Z.
收藏
  |  
浏览/下载:62/0
  |  
提交时间:2013/03/25
Digital CR medicine radiation image is in doctor's favor and has became medicine imaging technology new hot spot because of its high gray contrast
powerful computer disposal function
little radiation dosage
non-film diagnosis
different area consultation. But degradation of digital X-ray medical image such as low contrast and blurring during radiographic imaging
caused by complexity of body tissue and effects of X-ray scattering and electrical noise etc.
can worsen the results of analysis and diagnosis. So it is usually needed that CR medicine image is enhanced to improve its vision quality
and easy to doctor's more accurate diagnosis. The general enhancement algorithms over enhancing the contrast and lose image details
aiming at the defects
an enhancement algorithm for CR image is proposed based on the ratio of deviation to mean of domain. The arithmetic enhance CR image edge details by adjusting factor K based on the ratio of deviation to mean of domain of CR image. Experiment results demonstrate that the algorithm enhances CR image detail and CR image enhanced has good visual effect
the adaptive enhancement method is fit for CR medicine image. (2012) Trans Tech Publications
Switzerland.