中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共8条,第1-8条 帮助

条数/页: 排序方式:
Understanding the acceleration phenomenon via high-resolution differential equations 期刊论文  OAI收割
MATHEMATICAL PROGRAMMING, 2022, 卷号: 195, 期号: 1-2, 页码: 79-148
作者:  
Shi, Bin;  Du, Simon S.;  Jordan, Michael, I;  Su, Weijie J.
  |  收藏  |  浏览/下载:30/0  |  提交时间:2023/02/07
A Minibatch Proximal Stochastic Recursive Gradient Algorithm Using a Trust-Region-Like Scheme and Barzilai-Borwein Stepsizes 期刊论文  OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 卷号: 32, 期号: 10, 页码: 4627-4638
作者:  
Yu, Tengteng;  Liu, Xin-Wei;  Dai, Yu-Hong;  Sun, Jie
  |  收藏  |  浏览/下载:20/0  |  提交时间:2022/04/02
Stereoscopic Image Stitching via Disparity-Constrained Warping and Blending 期刊论文  OAI收割
IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 卷号: 22, 期号: 3, 页码: 655-665
作者:  
Fan, Xiaoting;  Lei, Jianjun;  Fang, Yuming;  Huang, Qingming;  Ling, Nam
  |  收藏  |  浏览/下载:31/0  |  提交时间:2020/12/10
Generalized Latent Multi-View Subspace Clustering 期刊论文  OAI收割
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 卷号: 42, 期号: 1, 页码: 86-99
作者:  
Zhang, Changqing;  Fu, Huazhu;  Hu, Qinghua;  Cao, Xiaochun;  Xie, Yuan
  |  收藏  |  浏览/下载:59/0  |  提交时间:2020/03/30
Inexact proximal stochastic gradient method for convex composite optimization 期刊论文  OAI收割
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 卷号: 68, 期号: 3, 页码: 579-618
作者:  
Wang, Xiao;  Wang, Shuxiong;  Zhang, Hongchao
  |  收藏  |  浏览/下载:39/0  |  提交时间:2018/07/30
Frequency multiscale full-waveform velocity inversion 期刊论文  OAI收割
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2015, 卷号: 58, 期号: 1, 页码: 216-228
作者:  
Zhang WenSheng;  Luo Jia;  Teng JiWen
  |  收藏  |  浏览/下载:31/0  |  提交时间:2021/01/14
A MLP-PNN neural network for CCD image super-resolution in wavelet packet domain (EI CONFERENCE) 会议论文  OAI收割
2008 International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2008, October 12, 2008 - October 14, 2008, Dalian, China
Zhao X.; Fu D.; Zhai L.
收藏  |  浏览/下载:68/0  |  提交时间:2013/03/25
Image super-resolution methods process an input image sequence of a scene to obtain a still image with increased resolution. Classical approaches to this problem involve complex iterative minimization procedures  typically with high computational costs. In this paper is proposed a novel algorithm for super-resolution that enables a substantial decrease in computer load. First  decompose and reconstruct the image by wavelet packet. Before constructing the image  use neural network in place of other rebuilding method to reconstruct the coefficients in the wavelet packet domain. Second  probabilistic neural network architecture is used to perform a scattered-point interpolation of the image sequence data in the wavelet packet domain. The network kernel function is optimally determined for this problem by a MLP-PNN (Multi Layer Perceptron - Probabilistic Neural Network) trained on synthetic data. Network parameters dependent on the sequence noise level. This super-sampled image is spatially Altered to correct finite pixel size effects  to yield the final high-resolution estimate. This method can decrease the calculation cost and get perfect PSNR. Results are presented  showing the quality of the proposed method. 2008 IEEE.  
An increasing-angle property of the conjugate gradient method and the implementation of large-scale minimization algorithms with line searches 期刊论文  OAI收割
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2003, 卷号: 10, 期号: 4, 页码: 323-334
作者:  
Dai, YH;  Martinez, JM;  Yuan, JY
  |  收藏  |  浏览/下载:13/0  |  提交时间:2018/07/30