中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
新疆生态与地理研究所 [2]
地理科学与资源研究所 [1]
长春光学精密机械与物... [1]
自动化研究所 [1]
烟台海岸带研究所 [1]
采集方式
OAI收割 [6]
内容类型
会议论文 [4]
学位论文 [1]
期刊论文 [1]
发表日期
2021 [1]
2012 [1]
2010 [1]
2009 [1]
2008 [1]
2005 [1]
更多
学科主题
Materials ... [1]
Optics [1]
Physics, A... [1]
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Cloud Detection Algorithm for Multi-Satellite Remote Sensing Imagery Based on a Spectral Library and 1D Convolutional Neural Network
期刊论文
OAI收割
REMOTE SENSING, 2021, 卷号: 13, 期号: 16, 页码: 20
作者:
Ma, Nan
;
Sun, Lin
;
Zhou, Chenghu
;
He, Yawen
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2021/11/05
ASTER spectral library
hyperspectral data
1D convolutional neural network
cloud detection
data simulation
multi-satellite remote sensing images
A New Data Transformation Method for Cbers-02b Multi-spectral Images
会议论文
OAI收割
Bangkok, THAILAND, September 30, 2011 - October 1, 2011
Zhang, Chengwen
;
Tang, Jiakui
;
Mi, Sujuan
;
Zhao, Lijun
;
Li, Yongzhi
;
Yu, Xinju
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2013/03/11
Remote Sensing
Lbv Transformation
Multi-spectral Images
Classification
Cbers-02b
Destriping method using lifting wavelet transform of remote sensing image (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, August 24, 2010 - August 26, 2010, Changchun, China
作者:
He B.
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2013/03/25
Based on the characteristic of striping noise in remote sensing images
a new destriping noise technique for the improved multi-threshold method using lifting wavelet transform applied to remote sensing imagery is presented in this letter. Have used the lifting wavelet decomposition algorithm
the thresholds are determined by corresponding wavelet coefficients in every scale. Remote sensing imagery is so large that the algorithm must be fast and effective. The lifting wavelet transform is easily realized and inexpensive in computer time and storage space compared with the traditional wavelet transform. We also compare the method with some traditional destriping methods both by visual inspection and by appropriate indexes of quality of the denoised images. From the comparison we can see that the adaptive threshold method can preserve the spectral characteristic of the images while effectively remove striping noise and it did better than the existed ones. 2010 IEEE.
Using multi-spectral remote sensing data to extract and analyze the vegetation information in desert areas - A case in the western Gurbantunggut desert
会议论文
OAI收割
Proceedings-2009 International Conference on Environmental Science and Information Application Technology, ESIAT, Wuhan, China, 2009
Zhao
;
Huai-Bao1
;
Liu
;
Tong2
;
Cui
;
Yao-Ping3
;
Lei
;
Jia-Qiang1
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2011/08/23
Correlation coefficient - Desert area - Desertification monitoring - Gurbantunggut desert - Landsat TM images - Linear relationships - Multi-spectral - NDVI - Remote sensing data - Remote sensing images - Spatial distribution - Spectral mixture analysis - TM image - Vegetation coverage - Vegetation fractions - Vegetation index
Using synthetic variable ratio method to fuse multi-source remotely sensed images based on sensor spectral response
会议论文
OAI收割
2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, United states, 2008
Chen
;
Sheng1
;
Luo
;
Jiancheng1
;
Shen
;
Zhanfeng1
;
Geping2
;
Zhu
;
Changrning2
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2011/08/23
CIELAB color - Multi-spectral - Multiple regression analysis - Multisource - Physical meanings - Quickbird - Remotely sensed images - Spectral characters - Spectral response - Variable ratio
基于数字高程模型(DEM)与多光谱图像的地物分析
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2005
作者:
吴刚
收藏
  |  
浏览/下载:233/0
  |  
提交时间:2015/09/02
DEM
多光谱图像
地形分析
土地利用分类
图像配准
图像融合
Digital Elevation model (DEM)
multi-spectral images
terrain classification
land-use classification