中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [2]
青藏高原研究所 [1]
计算技术研究所 [1]
数学与系统科学研究院 [1]
自动化研究所 [1]
沈阳自动化研究所 [1]
更多
采集方式
OAI收割 [7]
内容类型
期刊论文 [5]
会议论文 [2]
发表日期
2022 [1]
2019 [2]
2010 [1]
2009 [1]
2006 [2]
学科主题
地球科学::地球化学 [1]
筛选
浏览/检索结果:
共7条,第1-7条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Not All Samples are Trustworthy: Towards Deep Robust SVP Prediction
期刊论文
OAI收割
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 卷号: 44, 期号: 6, 页码: 3154-3169
作者:
Xu, Qianqian
;
Yang, Zhiyong
;
Jiang, Yangbangyan
;
Cao, Xiaochun
;
Yao, Yuan
  |  
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2022/12/07
Noise measurement
Annotations
Task analysis
Predictive models
Robustness
Visualization
Training
Subjective visual property (SVP)
robustness
outlier detection
probabilistic model
Ergodicity for a class of semilinear stochastic partial differential equations
期刊论文
OAI收割
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 页码: 20
作者:
Dong, Zhao
;
Zhang, Rangrang
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2020/05/24
invariant measures
irreducibility
semilinear partial differential equations
space-time white noise
strong Feller property
Property Investigation on the Additive White Gaussian Noise After Sub-Nyquist Sampling
期刊论文
OAI收割
IEEE ACCESS, 2019, 卷号: 7, 页码: 122820-122826
作者:
Gong TR(宫铁瑞)
;
Liu ZF(刘志峰)
;
Xie C(谢闯)
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2019/10/10
Noise property
noise folding factor
sub-Nyquist sampling
Cr image enhancement based on human visual characteristics (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on Computer Design and Applications, ICCDA 2010, June 25, 2010 - June 27, 2010, Qinhuangdao, Hebei, China
Zhang M.-H.
;
Zhang Y.-Y.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
The characteristic of digital CR medicine radiation image has wide dynamic range
abundant details and bad contrast
so it is necessary to enhance CR image to the need of doctor diagnosis. But the general enhancement algorithms don't consider human visual characteristics
so it puts forward CR medicine image adaptive enhancement algorithm combining the human visual property
which is more sensitive to smooth area noise compared with detail area noise
and makes image edge detail enhancement great in detail area
and detail enhancement little in smooth area
in which factor K is based on space change of image domain
accordingly gaining non-linear enhancement edge details of CR image. Experiment results demonstrate that the algorithm enhances CR image detail and CR image enhanced has good visual effect
so the method is fit for edge detail enhancement of CR medicine radiation image. 2010 IEEE.
Analysis of geophone properties effects for land seismic data
期刊论文
OAI收割
APPLIED GEOPHYSICS, 2009, 卷号: 6, 期号: 1, 页码: 93-101
Li GL (李桂林)
;
Chen
;
G (Chen Gao)
;
Zhong
;
JY (Zhong Junyi)
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2010/04/21
Property index
geophone
resolution
natural frequency
signal/noise ratio
Chord-based image reconstruction in cone-beam CT with a curved detector
期刊论文
OAI收割
MEDICAL PHYSICS, 2006, 卷号: 33, 期号: 10, 页码: 3743-3757
作者:
Zuo, Nianming
;
Xia, Dan
;
Zou, Yu
;
Jiang, Tianzi
;
Pan, Xiao-Chuan
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2015/11/08
computed tomography
cone-beam
curved detector
chords
image reconstruction
noise property
A novel starting-point-independent wavelet coefficient shape matching (EI CONFERENCE)
会议论文
OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
Hu S.
;
Zhu M.
;
Wu C.
;
Song H.-J.
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2013/03/25
In many computer vision tasks
in order to improve the accuracy and robustness to the noise
wavelet analysis is preferred for the natural multi-resolution property. However
the wavelet representation suffers from the dependency of the starting point of the sampled contour. For overcoming the problem that the wavelet representation depends on the starting point of the sampled contour
the Zernike moments are introduced
and a novel Starting-Point-lndependent wavelet coefficient shape matching algorithm is presented. The proposed matching algorithm firstly gains the object contours
and give the translation and scale invariant object shape representation. The object shape representation is converted to the dyadic wavelet representation by the wavelet transform. And then calculate the Zernike moments of wavelet representation in different scales. With respect to property of rotation invariant of Zernike moments
consider the Zernike moments as the feature vector to calculate the dissimilarity between the object and template image
which overcoming the problem of dependency of starting point. The experimental results have proved the proposed algorithm to be efficient
precise
and robust.