中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [4]
自动化研究所 [1]
沈阳自动化研究所 [1]
采集方式
OAI收割 [6]
内容类型
会议论文 [5]
期刊论文 [1]
发表日期
2019 [1]
2016 [1]
2012 [2]
2011 [1]
2006 [1]
学科主题
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Radiomics analysis potentially reduces over-diagnosis of prostate cancer with PSA levels of 4-10 ng/ml based on DWI data
会议论文
OAI收割
San Diego, California, United States, 2019-3-13
作者:
Zhang, Shuaitong
;
Qi, Yafei
;
Wei, Jingwei
;
Niu, Jianxing
;
Gu, Dongsheng
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2020/06/11
Prostate specific antigen
Prostate cancer
Over-diagnosis
Radiomics
Random forest
Fault diagnosis and robust fault-tolerant control for linear over-actuated systems
期刊论文
OAI收割
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 卷号: 230, 期号: 5, 页码: 832-844
作者:
Zhou M(周萌)
;
Qi JT(齐俊桐)
;
Wang ZH(王振华)
;
Shen Y(沈毅)
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2016/04/30
Over-actuated systems
fault diagnosis
robust fault-tolerant control
sparse optimization
virtual actuator
The application of adaptive enhancement algorithm based on gray entropy in mammary gland CR image (EI CONFERENCE)
会议论文
OAI收割
2012 2nd International Conference on Consumer Electronics, Communications and Networks, CECNet 2012, April 21, 2012 - April 23, 2012, Three Gorges, China
Zhang M.-H.
;
Zhang Y.-Y.
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2013/03/25
Mammary gland is composed entirely of soft tissue with approximate density
therefore mammary gland CR medicine radiation image presents a low contrast
and slight difference changes may be a manifestation of tumor
so it is necessary to enhance mammary gland CR image to improve its visual quality in order to meet the demands of doctor's clinical diagnosis. However the general enhancement algorithms over enhance the contrast and noise
due to image details lost
aiming at the defects
a mammary gland CR medicine image adaptive enhancement arithmetic based on image gray entropy is put forward. The arithmetic adapts dizzy image to magnify selected spatial frequency response in order to enhance the edge details of mammary gland CR images. It can adjust weighted factor K according to image gray characteristics namely pixel gray entropy. Experiments results demonstrate that mammary gland CR image enhanced by the algorithm has abundant details and high signal-to-noise ratio
moreover
CR image enhanced has good visual effect. So the method is effective and fit for enhancing CR medical radiation image edge details. 2012 IEEE.
The research of digltal CR medicine image adapitive enhancement method (EI CONFERENCE)
会议论文
OAI收割
4th International Conference on Mechanical and Electrical Technology, ICMET 2012, July 24, 2012 - July 26, 2012, Kuala Lumpur, Malaysia
Ming-Hui Z.
;
Yao-Yu Z.
收藏
  |  
浏览/下载:66/0
  |  
提交时间:2013/03/25
Digital CR medicine radiation image is in doctor's favor and has became medicine imaging technology new hot spot because of its high gray contrast
powerful computer disposal function
little radiation dosage
non-film diagnosis
different area consultation. But degradation of digital X-ray medical image such as low contrast and blurring during radiographic imaging
caused by complexity of body tissue and effects of X-ray scattering and electrical noise etc.
can worsen the results of analysis and diagnosis. So it is usually needed that CR medicine image is enhanced to improve its vision quality
and easy to doctor's more accurate diagnosis. The general enhancement algorithms over enhancing the contrast and lose image details
aiming at the defects
an enhancement algorithm for CR image is proposed based on the ratio of deviation to mean of domain. The arithmetic enhance CR image edge details by adjusting factor K based on the ratio of deviation to mean of domain of CR image. Experiment results demonstrate that the algorithm enhances CR image detail and CR image enhanced has good visual effect
the adaptive enhancement method is fit for CR medicine image. (2012) Trans Tech Publications
Switzerland.
Multi-focus image fusion algorithm based on adaptive PCNN and wavelet transform (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Imaging Detectors and Applications, May 24, 2011 - May 26, 2011, Beijing, China
Wu Z.-G.
;
Wang M.-J.
;
Han G.-L.
收藏
  |  
浏览/下载:78/0
  |  
提交时间:2013/03/25
Being an efficient method of information fusion
image fusion has been used in many fields such as machine vision
medical diagnosis
military applications and remote sensing.In this paper
Pulse Coupled Neural Network (PCNN) is introduced in this research field for its interesting properties in image processing
including segmentation
target recognition et al.
and a novel algorithm based on PCNN and Wavelet Transform for Multi-focus image fusion is proposed. First
the two original images are decomposed by wavelet transform. Then
based on the PCNN
a fusion rule in the Wavelet domain is given. This algorithm uses the wavelet coefficient in each frequency domain as the linking strength
so that its value can be chosen adaptively. Wavelet coefficients map to the range of image gray-scale. The output threshold function attenuates to minimum gray over time. Then all pixels of image get the ignition. So
the output of PCNN in each iteration time is ignition wavelet coefficients of threshold strength in different time. At this moment
the sequences of ignition of wavelet coefficients represent ignition timing of each neuron. The ignition timing of PCNN in each neuron is mapped to corresponding image gray-scale range
which is a picture of ignition timing mapping. Then it can judge the targets in the neuron are obvious features or not obvious. The fusion coefficients are decided by the compare-selection operator with the firing time gradient maps and the fusion image is reconstructed by wavelet inverse transform. Furthermore
by this algorithm
the threshold adjusting constant is estimated by appointed iteration number. Furthermore
In order to sufficient reflect order of the firing time
the threshold adjusting constant is estimated by appointed iteration number. So after the iteration achieved
each of the wavelet coefficient is activated. In order to verify the effectiveness of proposed rules
the experiments upon Multi-focus image are done. Moreover
comparative results of evaluating fusion quality are listed. The experimental results show that the method can effectively enhance the edge details and improve the spatial resolution of the image. 2011 SPIE.
Lossless wavelet compression on medical image (EI CONFERENCE)
会议论文
OAI收割
4th International Conference on Photonics and Imaging in Biology and Medicine, September 3, 2005 - September 6, 2005, Tianjin, China
作者:
Liu H.
;
Liu H.
;
Liu H.
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2013/03/25
An increasing number of medical imagery is created directly in digital form. Such as Clinical image Archiving and Communication Systems (PACS). as well as telemedicine networks require the storage and transmission of this huge amount of medical image data. Efficient compression of these data is crucial. Several lossless and lossy techniques for the compression of the data have been proposed. Lossless techniques allow exact reconstruction of the original imagery while lossy techniques aim to achieve high compression ratios by allowing some acceptable degradation in the image. Lossless compression does not degrade the image
thus facilitating accurate diagnosis
of course at the expense of higher bit rates
i.e. lower compression ratios. Various methods both for lossy (irreversible) and lossless (reversible) image compression are proposed in the literature. The recent advances in the lossy compression techniques include different methods such as vector quantization
wavelet coding
neural networks
and fractal coding. Although these methods can achieve high compression ratios (of the order 50:1
or even more)
they do not allow reconstructing exactly the original version of the input data. Lossless compression techniques permit the perfect reconstruction of the original image
but the achievable compression ratios are only of the order 2:1
up to 4:1. In our paper
we use a kind of lifting scheme to generate truly loss-less non-linear integer-to-integer wavelet transforms. At the same time
we exploit the coding algorithm producing an embedded code has the property that the bits in the bit stream are generated in order of importance
so that all the low rate codes are included at the beginning of the bit stream. Typically
the encoding process stops when the target bit rate is met. Similarly
the decoder can interrupt the decoding process at any point in the bil stream
and still reconstruct the image. Therefore
a compression scheme generating an embedded code can start sending over the network the coarser version of the image first
and continues with the progressive transmission of the refinement details. Experimental results show that our method can get a perfect performance in compression ratio and reconstructive image.