中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [1]
自动化研究所 [1]
沈阳自动化研究所 [1]
广州能源研究所 [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [3]
会议论文 [1]
发表日期
2020 [1]
2017 [1]
2016 [1]
2011 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
PID Neural Network Decoupling Control Based on Hybrid Particle Swarm Optimization and Differential Evolution
期刊论文
OAI收割
International Journal of Automation and Computing, 2020, 卷号: 17, 期号: 6, 页码: 867-873
作者:
Hong-Tao Ye
;
Zhen-Qiang Li
  |  
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2021/02/22
Particle swarm optimization
differential evolution
proportion integration differentiation (PID) neural network
hybrid approach
decoupling control.
基于BP神经网络整定的PID控制及其仿真
期刊论文
OAI收割
山东陶瓷, 2017, 卷号: 40, 期号: 3, 页码: 27-31
作者:
高富强
;
李萍
;
张磊敏
;
曾令可
;
涂腾
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2018/12/21
PID
整定
BP神经网络
仿真
PID
Tuning
Back Propagation Neural Network
Simulation
Attitude control for astronaut assisted robot in the space station
期刊论文
OAI收割
International Journal of Control, Automation and Systems, 2016, 卷号: 14, 期号: 4, 页码: 1082-1095
作者:
Liu JG(刘金国)
;
Gao Q(高庆)
;
Liu ZW(刘志伟)
;
Li YM(李杨民)
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2016/07/22
Astronaut assisted robot
attitude control
PID Neural Network
space station
Double inverted pendulum control based on three-loop PID and improved BP neural network (EI CONFERENCE)
会议论文
OAI收割
2011 2nd International Conference on Digital Manufacturing and Automation, ICDMA 2011, August 5, 2011 - August 7, 2011, Zhangjiajie, Hunan, China
作者:
Fan Y.
收藏
  |  
浏览/下载:47/0
  |  
提交时间:2013/03/25
To deal with the defects of BP neural networks used in balance control of inverted pendulum
such as longer train time and converging in partial minimum
this article reaLizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks(ANN)
builds up a training model of test simulation and the BP network is 6-10-1 structure. Tansig function is used in hidden layer and PureLin function is used in output layer
LM is used in training algorithm. The training data is acquried by three-loop PID algorithm. The model is learned and trained with Matlab calculating software
and the simuLink simulation experiment results prove that improved BP algorithm for inverted pendulum control has higher precision
better astringency and lower calculation. This algorithm has wide appLication on nonLinear control and robust control field in particular. 2011 IEEE.