中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [1]
自动化研究所 [1]
采集方式
OAI收割 [2]
内容类型
会议论文 [1]
学位论文 [1]
发表日期
2013 [1]
2012 [1]
学科主题
筛选
浏览/检索结果:
共2条,第1-2条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
大类别集分类与自适应及其在汉字识别中的应用
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院大学, 2013
作者:
张煦尧
收藏
  |  
浏览/下载:56/0
  |  
提交时间:2015/09/02
大类别集模式分类
手写汉字识别
降维
局部平滑
修正二次判别函数
分类器自适应
风格迁移映射
模式域分类
Large Category Classification
Handwritten Chinese Character Recognition
Dimensionality Reduction
Local Smoothing
MQDF
Adaptation
Style Transfer Mapping
Pattern Field Classification
On hyperspectral remotely sensed image classification based on MNF and AdaBoosting (EI CONFERENCE)
会议论文
OAI收割
2012 3rd IEEE/IET International Conference on Audio, Language and Image Processing, ICALIP 2012, July 16, 2012 - July 18, 2012, Shanghai, China
作者:
Yu P.
;
Yu P.
;
Gao X.
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2013/03/25
As an effective statistical learning tool
AdaBoosting has been widely used in the field of pattern recognition. In this paper
a new method is proposed to improve the classification performance of hyperspectral images by combining the minimum noise fraction (MNF) and AdaBoosting. Because the hyperspectral imagery has many bands which have strong correlation and high redundancy
the hyperspectral data are pre-processed by the minimum noise fraction to reduce the data's dimensionality
whilst to remove noise bands simultaneously. Then
we use an AdaBoost algorithm to conduct the classification of hyperspectral remotely sensed image. Experimental results show that the classification accuracy is improved and the time of calculation is reduced as well. 2012 IEEE.