中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
数学与系统科学研究院 [4]
力学研究所 [2]
海洋研究所 [1]
采集方式
OAI收割 [7]
内容类型
期刊论文 [6]
CNKI期刊论文 [1]
发表日期
2025 [1]
2024 [1]
2022 [1]
2021 [3]
2020 [1]
学科主题
筛选
浏览/检索结果:
共7条,第1-7条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Direct numerical simulation of natural convection based on parameter-input physics-informed neural networks
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 卷号: 236, 页码: 126379
作者:
Ye,Shuran
;
Huang JL(黄剑霖)
;
Zhang, Zhen
;
Wang YW(王一伟)
;
Huang CG(黄晨光)
  |  
收藏
  |  
浏览/下载:3/0
  |  
提交时间:2024/12/02
Natural convection
Physics-informed neural networks
Parameter-input PINNs
Ra number
Deep learning
A framework of data assimilation for wind flow fields by physics-informed neural networks
期刊论文
OAI收割
APPLIED ENERGY, 2024, 卷号: 371, 页码: 18
作者:
Yan C(闫畅)
;
Xu SF(许盛峰)
;
Sun ZX(孙振旭)
;
Lutz, Thorsten
;
Guo DL(郭迪龙)
  |  
收藏
  |  
浏览/下载:3/0
  |  
提交时间:2024/11/22
Data assimilation
Wind field reconstruction
Physics-informed deep learning
Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations
CNKI期刊论文
OAI收割
2022
作者:
Yuchao Zhu
;
Rong-Hua Zhang
;
James N.Moum
;
Fan Wang
;
Xiaofeng Li
  |  
收藏
  |  
浏览/下载:2/0
  |  
提交时间:2024/12/18
physics-informed deep learning
climate model biases
ocean vertical-mixing parameterizations
long-term turbulence data
artificial neural networks under physics constraint
Data-driven peakon and periodic peakon solutions and parameter discovery of some nonlinear dispersive equations via deep learning
期刊论文
OAI收割
PHYSICA D-NONLINEAR PHENOMENA, 2021, 卷号: 428, 页码: 15
作者:
Wang, Li
;
Yan, Zhenya
  |  
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2022/04/02
Nonlinear dispersive equation
Initial-boundary value conditions
Physics-informed neural networks
Deep learning
Data-driven peakon and periodic peakon
solutions Data-driven parameter discovery
Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrodinger equation with a potential using the PINN deep learning
期刊论文
OAI收割
PHYSICS LETTERS A, 2021, 卷号: 404, 页码: 7
作者:
Wang, Li
;
Yan, Zhenya
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2021/10/26
Defocusing NLS equation with the
time-dependent potential
Initial-boundary value conditions
Physics-informed neural networks
Deep learning
Data-driven rogue waves and parameter discovery
Solving forward and inverse problems of the logarithmic nonlinear Schrodinger equation with PT-symmetric harmonic potential via deep learning
期刊论文
OAI收割
PHYSICS LETTERS A, 2021, 卷号: 387, 页码: 12
作者:
Zhou, Zijian
;
Yan, Zhenya
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2021/04/26
Logarithmic nonlinear Schrodinger equation
PT-symmetric potentials
Physics-informed neural networks
Deep learning
Data-driven discovery of LNLS equation
Data-driven solitons
SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
期刊论文
OAI收割
NEURAL NETWORKS, 2020, 卷号: 132, 页码: 166-179
作者:
Jin, Pengzhan
;
Zhang, Zhen
;
Zhu, Aiqing
;
Tang, Yifa
;
Karniadakis, George Em
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2021/04/26
Deep learning
Physics-informed
Dynamical systems
Hamiltonian systems
Symplectic maps
Symplectic integrators