中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
力学研究所 [5]
采集方式
OAI收割 [5]
内容类型
期刊论文 [5]
发表日期
2024 [2]
2023 [2]
2020 [1]
学科主题
筛选
浏览/检索结果:
共5条,第1-5条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
AsPINN: Adaptive symmetry-recomposition physics-informed neural networks
期刊论文
OAI收割
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 卷号: 432, 页码: 34
作者:
Liu ZT(刘子提)
;
Liu Y(刘洋)
;
Yan, Xunshi
;
Liu W(刘文)
;
Guo SQ(郭帅旗)
  |  
收藏
  |  
浏览/下载:9/0
  |  
提交时间:2024/11/01
Network structure
Parameter-sharing
Feature-enhanced physics-informed neural
networks
Symmetry decomposition
Chien-physics-informed neural networks for solving singularly perturbed boundary-layer problems
期刊论文
OAI收割
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2024, 卷号: 45, 期号: 9, 页码: 1467-1480
作者:
Wang, Long
;
Zhang, Lei
;
He, Guowei
;
He GW(何国威)
  |  
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2024/10/08
physics-informed neural network (PINN)
singular perturbation
boundary-layer problem
composite asymptotic expansion
O302
Rapid evaluation of capillary pressure and relative permeability for oil-water flow in tight sandstone based on a physics-informed neural network
期刊论文
OAI收割
JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2023
作者:
Ji LL(姬莉莉)
;
Xu, Fengyang
;
Lin M(林缅)
;
Jiang WB(江文滨)
;
Cao GH(曹高辉)
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2023/09/05
Two-phase flow
Capillary pressure curve
Relative permeability curve
Tight sandstone
Physics-informed neural network
A practical approach to flow field reconstruction with sparse or incomplete data through physics informed neural network
期刊论文
OAI收割
ACTA MECHANICA SINICA, 2023, 卷号: 39, 期号: 3, 页码: 322302
作者:
Xu SF(许盛峰)
;
Sun ZX(孙振旭)
;
Huang RF(黄仁芳)
;
Guo DL(郭迪龙)
;
Yang GW(杨国伟)
  |  
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2023/04/20
Physics informed neural network
Flow field reconstruction
Particle image velocimetry
Cosine annealing algorithm
Experimental fluid dynamics
Energy performance prediction of the centrifugal pumps by using a hybrid neural network
期刊论文
OAI收割
Energy, 2020, 卷号: 213, 页码: 119005
作者:
Huang RF(黄仁芳)
;
Zhang Z(张珍)
;
Zhang W
;
Mou JG
;
Zhou PJ
  |  
收藏
  |  
浏览/下载:64/0
  |  
提交时间:2021/01/29
Centrifugal pump
Energy performance
Loss model
Physics-informed neural network