中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共2条,第1-2条 帮助

条数/页: 排序方式:
Glacier surface motion pattern in the Eastern part of West Kunlun Shan estimation using pixel-tracking with PALSAR imagery 期刊论文  OAI收割
ENVIRONMENTAL EARTH SCIENCES, 2015, 卷号: 74, 期号: 3, 页码: 948-960
作者:  
Yan, Shiyong;  Liu, Guang;  Wang, Yunjia;  Perski, Zbigniew;  Ruan, Zhixing
收藏  |  浏览/下载:41/0  |  提交时间:2016/04/20
Displacement estimation by the phase-shiftings of fourier transform in present white noise (EI CONFERENCE) 会议论文  OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
作者:  
Wu Y.-H.
收藏  |  浏览/下载:27/0  |  提交时间:2013/03/25
Displacement estimation is a fundamental problem in Real-time video image processing. It can be typically approached by theories based on features in spatial domain. This paper presents an algorithm which improves the theory for estimating the moving object's displacement in spatial domain by its Fourier transform frequency spectrum. Because of the characters of Fourier transform  the result is based on all the features in the image. Utilizing shift theorem of Fourier transform and auto-registration  the algorithm employs the phase spectrum difference in polar coordinate of two frame images sequence with the moving target1  2. The method needn't transform frequency spectrum to spatial domain after calculation comparing with the traditional algorithm which has to search Direc peak  and it reduces processing time. Since the technique proposed uses all the image information  including all the white noise in the image especially  and it's hard to overcome the aliasing from noises  but the technique can be an effective way to analyze the result in little white noise by the different characters between high and low frequency bands. It can give the displacement of moving target within 1 pixel of accuracy. Experimental evidence of this performance is presented  and the mathematical reasons behind these characteristics are explained in depth. It is proved that the algorithm is fast and simple and can be used in image tracking and video image processing.