中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [2]
力学研究所 [1]
采集方式
OAI收割 [3]
内容类型
会议论文 [2]
期刊论文 [1]
发表日期
2020 [1]
2006 [1]
2005 [1]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Aeroelastic Simulation Using CFD/CSD Coupling Based on Precise Integration Method
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2020, 页码: 18
作者:
Huang CD(黄程德)
;
Huang J(黄杰)
;
Song X(宋鑫)
;
Zheng GN(郑冠男)
;
Nie XY(聂雪媛)
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2020/04/07
Flutter
Static aeroelasticity
CFD
CSD coupling
Precise integration method
Multiwavelet based multispectral image fusion for corona detection (EI CONFERENCE)
会议论文
OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
作者:
Wang X.
;
Yang H.-J.
;
Sui Y.-X.
;
Yan F.
;
Yan F.
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2013/03/25
Image fusion refers to the integration of complementary information provided by various sensors such that the new images are more useful for human or machine perception. Multiwavelet transform has simultaneous orthogonality
symmetry
compact support
and vanishing moment
which are not possible with scalar wavelet transform. Multiwavelet analysis can offer more precise image analysis than wavelet multiresolution analysis. In this paper
a new image fusion algorithm based on discrete multiwavelet transform (DMWT) to fuse the dual-spectral images generated from the corona detection system is presented. The dual-spectrum detection system is used to detect the corona and indicate its exact location. The system combines a solar-blind UV ICCD with a visible camera
where the UV image is useful for detecting UV emission from corona and the visible image shows the position of the corona. The developed fusion algorithm is proposed considering the feature of the UV and visible images adequately. The source images are performed at the pixel level. First
a decomposition step is taken with the DMWT. After the decomposition step
a pyramid for each source image in each level can be obtained. Then
an optimized coefficient fusion rule consisting of activity level measurement
coefficient combining and consistency verification is used to acquire the fused coefficients. This process reduces the impulse noise of UV image. Finally
a new fused image is obtained by reconstructing the fused coefficients using inverse DMWT. This image fusion algorithm has been applied to process the multispectral UV/visible images. Experimental results show that the proposed method outperforms the discrete wavelet transform based approach.
Packaging technology of polymer/Si arrayed waveguide grating and their environmental stability (EI CONFERENCE)
会议论文
OAI收割
2005 6th International Conference on Electronics Packaging Technology, August 30, 2005 - September 2, 2005, Dameisha, Shenzhen, China
作者:
Zhang Y.
;
Zhang X.
;
Zhang X.
;
Zhang X.
;
Wang F.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
Future optical communication systems will use more of the exceptional high bandwidth of optical fiber. Wavelength division multiplexing (WDM) systems are well suited to transport terabits of information via the fiber[1]. Multiplexers/ demultiplexers (MUX/DEMUX) are essential components for dense WDM systems. Several different kinds of multiplexer types have been developed in the past: (a) interference filters
(b) fiber gratings
and (c) planar lightwave circuit (PLC) MUX/DEMUXers[2
3]. The planar fabrication process of the last mentioned PLCs allows the realization of high performance filters with a large number of wavelength channels. Further
an integration with other optical elements seems to be possible. Arrayed waveguide gratings (AWG) are a special kind of PLC-MUX/DEMUXers
which are very attractive components for WDM systems because of their great flexibility in filter design[4
5]. Basically
an AWG is an optical spectrograph built in planar waveguide technique. Typically
AWGs works in a high grating order (50-250). For AWG multiplexer applications in communications systems a precise wavelength controllability and wavelength stability with long term is demanded. Recently
a polymeric (especially fluorinated polymer with low optical absorption loss in the infrared region) AWG has attracted much attention because of its easy fabrication
low cost possibility and a potential of integration with other polymer devices[6]. Standard AWGs
however
show a change of center wavelength with temperature. A method to prevent this temperature drift is to package the AWG together with a temperature controller in order to tune and fix the desired filter-wavelength. In this paper
a 32-channel AWG was fabricated using a cross-linkable fluorinated poly (ether ether ketone) (FPEEK)
its package technology and environmental stability were also discussed. 2005 IEEE.