中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [3]
金属研究所 [1]
文献情报中心 [1]
采集方式
OAI收割 [5]
内容类型
会议论文 [3]
期刊论文 [2]
发表日期
2015 [1]
2011 [2]
2010 [1]
2005 [1]
学科主题
图书馆、情报与文献学 [1]
新闻学与传播学 [1]
筛选
浏览/检索结果:
共5条,第1-5条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A new approach to assessing the science and technology competitiveness of China's provincial academies of sciences
期刊论文
OAI收割
chinese journal of library and information science, 2015, 卷号: 8, 期号: 4, 页码: 18-31
作者:
XU Huifang
收藏
  |  
浏览/下载:159/0
  |  
提交时间:2016/02/25
Science and technology (S&T) competitiveness
Provincial academy of sciences (PASs)
Research strength
Research impact
Competitiveness evaluation
Multi-focus image fusion algorithm based on adaptive PCNN and wavelet transform (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Imaging Detectors and Applications, May 24, 2011 - May 26, 2011, Beijing, China
Wu Z.-G.
;
Wang M.-J.
;
Han G.-L.
收藏
  |  
浏览/下载:78/0
  |  
提交时间:2013/03/25
Being an efficient method of information fusion
image fusion has been used in many fields such as machine vision
medical diagnosis
military applications and remote sensing.In this paper
Pulse Coupled Neural Network (PCNN) is introduced in this research field for its interesting properties in image processing
including segmentation
target recognition et al.
and a novel algorithm based on PCNN and Wavelet Transform for Multi-focus image fusion is proposed. First
the two original images are decomposed by wavelet transform. Then
based on the PCNN
a fusion rule in the Wavelet domain is given. This algorithm uses the wavelet coefficient in each frequency domain as the linking strength
so that its value can be chosen adaptively. Wavelet coefficients map to the range of image gray-scale. The output threshold function attenuates to minimum gray over time. Then all pixels of image get the ignition. So
the output of PCNN in each iteration time is ignition wavelet coefficients of threshold strength in different time. At this moment
the sequences of ignition of wavelet coefficients represent ignition timing of each neuron. The ignition timing of PCNN in each neuron is mapped to corresponding image gray-scale range
which is a picture of ignition timing mapping. Then it can judge the targets in the neuron are obvious features or not obvious. The fusion coefficients are decided by the compare-selection operator with the firing time gradient maps and the fusion image is reconstructed by wavelet inverse transform. Furthermore
by this algorithm
the threshold adjusting constant is estimated by appointed iteration number. Furthermore
In order to sufficient reflect order of the firing time
the threshold adjusting constant is estimated by appointed iteration number. So after the iteration achieved
each of the wavelet coefficient is activated. In order to verify the effectiveness of proposed rules
the experiments upon Multi-focus image are done. Moreover
comparative results of evaluating fusion quality are listed. The experimental results show that the method can effectively enhance the edge details and improve the spatial resolution of the image. 2011 SPIE.
Optimum design of the carbon fiber thin-walled baffle for the space-based camera (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Space Exploration Technologies and Applications, May 24, 2011 - May 26, 2011, Beijing, China
Yan Y.
;
Gu S.
;
An Y.
;
Jin G.
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2013/03/25
The thin-walled baffle design of the space-based camera is an important job in the lightweight space camera research task for its stringent quality requirement and harsh mechanical environment especially for the thin-walled baffle of the carbon fiber design. In the paper
an especially thin-walled baffle of the carbon fiber design process was described and it is sound significant during the other thin-walled baffle design of the space camera. The designer obtained the design margin of the thin-walled baffle that structural stiffness and strength can tolerated belong to its development requirements through the appropriate use of the finite element analysis of the walled parameters influence sensitivity to its structural stiffness and strength. And the designer can determine the better optimization criterion of thin-walled baffle during the geometric parameter optimization process in such guiding principle. It sounds significant during the optimum design of the thin-walled baffle of the space camera. For structural stiffness and strength of the carbon fibers structure which can been designed
the effect of the optimization will be more remarkable though the optional design of the parameters chose. Combination of manufacture process and design requirements the paper completed the thin-walled baffle structure scheme selection and optimized the specific carbon fiber fabrication technology though the FEM optimization
and the processing cost and process cycle are retrenchment/saved effectively in the method. Meanwhile
the weight of the thin-walled baffle reduced significantly in meet the design requirements under the premise of the structure. The engineering prediction had been adopted
and the related result shows that the thin-walled baffle satisfied the space-based camera engineering practical needs very well
its quality reduced about 20%
the final assessment index of the thin-walled baffle were superior to the overall design requirements significantly. The design method is reasonable and efficient to the other thin-walled baffle that mass and work environment requirement is requirement harsh. 2011 SPIE.
Influence of smelting processes on precipitation behaviors and mechanical properties of low activation ferrite steels
期刊论文
OAI收割
Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010, 卷号: 528, 期号: 2, 页码: 657-662
Z. X. Xia
;
C. Zhang
;
H. Lan
;
Z. G. Yang
;
P. H. Wang
;
J. M. Chen
;
Z. Y. Xu
;
X. W. Li
;
S. Liu
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2012/04/13
CLF-1 steel
Precipitation behaviors
Smelting processes
Creep
properties
Macrosegregation
research-and-development
creep-rupture property
martensitic 9cr
steels
microstructure
strength
jlf-1
clam
Fabrication and electron emission of carbon microtubes (EI CONFERENCE)
会议论文
OAI收割
Technical Digest of the 18th International Vacuum Nanoelectronics Conference, IVNC 2005, July 10, 2005 - July 14, 2005, Oxford, United kingdom
作者:
Liu L.
;
Liu L.
;
Wang W.
;
Wang W.
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2013/03/25
Carbon nanotubes have been attracting attention because of their unique physical properties and their application potential for field emission cathode. Carbon nanotubes possess the following properties favorable for field emission material
such as a high aspect ratio and sharp tip
high chemical stability
high mechanical strength
stable at high temperature. Some research works on carbon nanotubes field emitter and field emission display have been reported. Here
a kind of carbon microtubes and its field emission properties are introduced. They have some different properties with carbon nanotubes
and the density is lower than carbon nanotubes bundles. These carbon microtubes are directly synthesized by liquidoid epitaxy method on silicon substrates at low temperature. The field emission properties of carbon microtubes are reported too. Carbon microtubes film is synthesized in liquid by electrolysis. The graphite plate is as anode
and n-silicon substrate with resistivity of 4-8 cm is as cathode. The electrolysis current is about 5-8mA/cm2
and applied voltage is 800-1500V. Temperatures of the methanol base solution is maintained at 60C in process of deposition of carbon microtubes. Carbon microtubes film is observed by scanning electron microscopy(SEM)
as shown in fig.1(a
b). The wall's thickness of carbon microtube is about 60nm. The diameter of carbon microtube is about 0.8 m. Raman spectrum of carbon microtubes film shows the two peaks at 1342and 1560cm-1. The field emission properties of carbon microtubes are measured in high vacuum chamber(10-5Pa). The emission area of carbon microtubes is 0.5cm 0.5cm. The threshold of field emission of the carbon microtubes film is about 3.6V/ m. Field emission property of carbon microtubes film is shown in fig.2. Another
when the electric field between anode and cathode is 10V/ m
the electric field distribution on single carbon microtube is also given after calculation according to electric field theory. Fig 3 shows that electric field distribution vertical section on the of single carbon microtube top with 2 m of highness. These results may help us to understand field emission properties of carbon microtubes. According to research results
it is found that liquidoid synthesis is simple method to produce carbon microtubes cold cathode material
and the carbon microtubes have better field emission properties. 2005 IEEE.