中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共8条,第1-8条 帮助

条数/页: 排序方式:
Distinguishing Epileptiform Discharges From Normal Electroencephalograms Using Scale-Dependent Lyapunov Exponent 期刊论文  OAI收割
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 卷号: 8, 页码: 14
作者:  
Li, Qiong;  Gao, Jianbo;  Huang, Qi;  Wu, Yuan;  Xu, Bo
  |  收藏  |  浏览/下载:48/0  |  提交时间:2021/01/07
Mapping Mangrove Forests Based on Multi-Tidal High-Resolution Satellite Imagery 期刊论文  OAI收割
REMOTE SENSING, 2018, 卷号: 10, 期号: 9, 页码: 20
作者:  
Xia, Qing;  Qin, Cheng-Zhi;  Li, He;  Huang, Chong;  Su, Fen-Zhen
  |  收藏  |  浏览/下载:41/0  |  提交时间:2019/05/23
Mapping Mangrove Forests Based on Multi-Tidal High-Resolution Satellite Imagery 期刊论文  OAI收割
REMOTE SENSING, 2018, 卷号: 10, 期号: 9, 页码: 20
作者:  
Xia, Qing
  |  收藏  |  浏览/下载:33/0  |  提交时间:2019/05/23
Mapping Mangrove Forests Based on Multi-Tidal High-Resolution Satellite Imagery 期刊论文  OAI收割
REMOTE SENSING, 2018, 卷号: 10, 期号: 9, 页码: 20
作者:  
Xia, Qing;  Qin, Cheng-Zhi;  Li, He;  Huang, Chong;  Su, Fen-Zhen
  |  收藏  |  浏览/下载:42/0  |  提交时间:2019/05/23
Classifying Discriminative Features for Blur Detection 期刊论文  OAI收割
ieee transactions on cybernetics, 2016, 卷号: 46, 期号: 10, 页码: 2220-2227
作者:  
Pang, Yanwei;  Zhu, Hailong;  Li, Xinyu;  Li, Xuelong
收藏  |  浏览/下载:31/0  |  提交时间:2016/11/02
Person-specific named entity recognition using SVM with rich feature sets 期刊论文  OAI收割
chinese journal of library and information science, 2012, 卷号: 5, 期号: 3, 页码: 27-46
NIE Hui
收藏  |  浏览/下载:53/0  |  提交时间:2012/11/29
Efficient human action recognition using accumulated motion image and support vector machines (EI CONFERENCE) 会议论文  OAI收割
International Workshop on Advanced Computational Intelligence and Intelligent Informatics, IWACIII 2011, November 19, 2011 - November 23, 2011, Suzhou, China
作者:  
Zhang X.;  Zhang J.;  Zhang J.;  Zhang X.;  Zhang X.
收藏  |  浏览/下载:73/0  |  提交时间:2013/03/25
Vision-based human action recognition provides an advanced interface  and research in this field of human action recognition has been actively carried out. This paper describes a scheme for recognizing human actions from a video sequences. The proposed method is an extension of the Motion History Image(MHI) method based on the ordinal measure of accumulated motion  which is robust to variations of appearances. We define the accumulated motion image(AMI) using image differences firstly. Then the AMI of the video sequencesis resized to a MN regulation following the standard of training phases. Finally  we employ Support Vector Machine(SVM) as a classifier to distinguish the current activity in target video sequences. In a word  our proposed algorithm not only outperforms the state of art on public available KTH data set and Weizmann data set  but also proves practical to some real world applications  in addition  this method is computationally simple and able to achieve a satisfactory accuracy.  
A SVM-based classifier with shape and motion features for a pedestrian detection system 会议论文  OAI收割
IEEE Intelligent Vehicles Symposium, Meguroku, JAPAN, JUN 13-15, 2006
作者:  
Chen, D.;  Cao, X. B.;  Xu, Y. X.;  Qiao, H.;  Wang, F. Y.
收藏  |  浏览/下载:25/0  |  提交时间:2017/01/13